SWS-Satz-3: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
K
K
 
Zeile 62: Zeile 62:
 
[[Benutzer:Kathrin_Fuchs/SSS_und_SWS/Weitere Aufgaben|<math>\Rightarrow</math> Wenn du jetzt noch Zeit hast, kannst du hier weitere Aufgaben zum SSS-Satz und SWS-Satz machen.]]
 
[[Benutzer:Kathrin_Fuchs/SSS_und_SWS/Weitere Aufgaben|<math>\Rightarrow</math> Wenn du jetzt noch Zeit hast, kannst du hier weitere Aufgaben zum SSS-Satz und SWS-Satz machen.]]
  
Ansonsten geht es hier weiter zum 3.Lernpfad: [[Benutzer:Kathrin_Fuchs/WSW_und_SSW_g|WSW und SSW<sub>g</sub>]]
+
Ansonsten geht es hier weiter zu einem der anderen beiden Lernpfade: <br />
 +
* [[Benutzer:Kathrin_Fuchs/Wiederholungen_zum_Dreieck | Wiederholungen zum Dreieck]]<br />
 +
* [[Benutzer:Kathrin_Fuchs/WSW_und_SSW_g | WSW-Satz und SSW<sub>g</sub>-Satz]]

Aktuelle Version vom 1. März 2010, 09:02 Uhr

Lernpfad SSS und SWS:   SSS-Satz - SSS: Aufgaben - SSS: Lösungen - SWS-Satz - SWS: Aufgaben - SWS: Lösungen - Weitere Aufgaben


Dreieck.png Lass uns nun die Konstruktionen und Beschreibungen vergleichen!

Konstruktionsbeschreibung zu a) mit c = 4,8 cm, b = 5,5 cm, \alpha = 58°

1. Zunächst fertigen wir eine Skizze an. KS Aufgabe aPlanfigur SWS.png
2. Wir beginnen mit der Grundseite c = 4,8 cm. KS Aufgabea1SWS.png
3. Dann tragen wir den Winkel \alpha = 58° an A ab. KS Aufgabea2SWS.png
4. Danach zeichnen wir einen Kreis mit Radius b = 5,5 cm um A. KS Aufgabea3SWS.png
5. Der Kreis schneidet die Halbgerade des Winkels im Punkt C. KS Aufgabea4SWS.png
6. Wir verbinden die Punkte B und C und erhalten ein eindeutig festgelegtes Dreieck. KS Aufgabea5SWS.png


Konstruktionsbeschreibung zu b) mit c = 7,6 cm, b = c, \alpha = 40°

1. Als erstes fertigen wir eine Skizze an, in der wir alle gegebenen Größen farbig markieren KS Aufgabe bPlanfigur SWS.png
2. Wir beginnen mit der Grundseite c = 7,6 cm. KS Aufgabeb1SWS.png
3. Dann tragen wir den Winkel \alpha = 40° an A ab. KS Aufgabeb2SWS.png
4. Danach zeichnen wir einen Kreis mit Radius b = c = 7,6 cm um A. KS Aufgabeb3SWS.png
5. Der Kreis schneidet die Halbgerade des Winkels im Punkt C. KS Aufgabeb4SWS.png
6. Wir verbinden die Punkte B und C. KS Aufgabeb5SWS.png


Konstruktionsbeschreibung zu c) a = 7,4 cm, b = 4,8 cm, \gamma = 84°

1. Zunächst fertigen wir eine Skizze an und markieren alle gegebenen Größen farbig. KS Aufgabe cPlanfigur SWS.png
2. Wir beginnen mit der Strecke [AC] = b = 4,8 cm. KS Aufgabe c1 SWS.png
3. Dann tragen wir den Winkel \gamma = 84° an C ab. KS Aufgabe c2 SWS.png
4. Danach zeichnen wir einen Kreis mit Radius a = 7,4 cm um C. KS Aufgabe c3 SWS.png
5. Der Kreis schneidet die Halbgerade des Winkels im Punkt B. KS Aufgabe c4 SWS.png
6. Wir verbinden die Punkte A und B. KS Aufgabe c5 SWS.png

\Rightarrow Wenn du jetzt noch Zeit hast, kannst du hier weitere Aufgaben zum SSS-Satz und SWS-Satz machen.

Ansonsten geht es hier weiter zu einem der anderen beiden Lernpfade: