Algebra: Gleichungen: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
(  eingefügt)
K
Zeile 23: Zeile 23:
  
  
* 3x + 10 = 19 &nbsp;&nbsp;&nbsp;| <u style="color:lightgrey;background:lightgrey">- 10 </u>  
+
* 3x + 10 = 19 &nbsp;&nbsp;&nbsp;| &nbsp;<u style="color:lightgrey;background:lightgrey">- 10 </u>  
 
<div align="right"><math>\mathbb{G}=\mathbb{N}</math></div>  
 
<div align="right"><math>\mathbb{G}=\mathbb{N}</math></div>  
  
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">3x = 9</u> &nbsp;&nbsp;&nbsp;| <u style="color:lightgrey;background:lightgrey">: 3</u>
+
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">3x = 9</u> &nbsp;&nbsp;&nbsp;| &nbsp;<u style="color:lightgrey;background:lightgrey">: 3</u>
  
 
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">x = 3</u>
 
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">x = 3</u>
Zeile 33: Zeile 33:
 
{{Lösung versteckt|1=
 
{{Lösung versteckt|1=
  
::<math> \ 3x + 10 = 19 | - 10 </math>  
+
::<math> \ 3x + 10 = 19 &nbsp;&nbsp;&nbsp;| &nbsp;- 10 </math>  
  
::<math>\Leftrightarrow 3x = 9 | : 3 </math>  
+
::<math>\Leftrightarrow 3x = 9 &nbsp;&nbsp;&nbsp;| &nbsp;: 3 </math>  
  
 
::<math>\Leftrightarrow x = 3 </math>  
 
::<math>\Leftrightarrow x = 3 </math>  
Zeile 42: Zeile 42:
 
}}
 
}}
  
* 9x - 18 = 27 | <u style="color:lightgrey;background:lightgrey"> + 18 </u>
+
* 9x - 18 = 27 &nbsp;&nbsp;&nbsp;| &nbsp;<u style="color:lightgrey;background:lightgrey"> + 18 </u>
 
<div align="right"><math>\mathbb{G}=\mathbb{Q}</math></div>  
 
<div align="right"><math>\mathbb{G}=\mathbb{Q}</math></div>  
  
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">9x = 45</u> | <u style="color:lightgrey;background:lightgrey">: 9</u>
+
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">9x = 45</u> &nbsp;&nbsp;&nbsp;| &nbsp;<u style="color:lightgrey;background:lightgrey">: 9</u>
  
 
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">x = 5</u>
 
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">x = 5</u>
Zeile 52: Zeile 52:
 
{{Lösung versteckt|1=
 
{{Lösung versteckt|1=
  
::<math> \ 9x - 18 = 27 | + 18 </math>  
+
::<math> \ 9x - 18 = 27 &nbsp;&nbsp;&nbsp;| &nbsp;+ 18 </math>  
  
::<math>\Leftrightarrow 9x = 45| : 9 </math>  
+
::<math>\Leftrightarrow 9x = 45&nbsp;&nbsp;&nbsp;| &nbsp;: 9 </math>  
  
 
::<math>\Leftrightarrow x = 5 </math>  
 
::<math>\Leftrightarrow x = 5 </math>  
Zeile 65: Zeile 65:
 
<div align="right"><math>\mathbb{G}=\mathbb{Q}</math></div>  
 
<div align="right"><math>\mathbb{G}=\mathbb{Q}</math></div>  
  
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey"> 12 - 1 = 2x + 1</u> | <u style="color:lightgrey;background:lightgrey">- 1</u>  
+
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey"> 12 - 1 = 2x + 1</u> &nbsp;&nbsp;&nbsp;| &nbsp;<u style="color:lightgrey;background:lightgrey">- 1</u>  
  
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">10 = 2x</u> | <u style="color:lightgrey;background:lightgrey">: 2</u>
+
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">10 = 2x</u> &nbsp;&nbsp;&nbsp;| &nbsp;<u style="color:lightgrey;background:lightgrey">: 2</u>
  
 
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">x = 5</u>
 
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">x = 5</u>
Zeile 76: Zeile 76:
 
::<math> \ 12 - 12 : 12 = 2x + 2 : 2 </math>
 
::<math> \ 12 - 12 : 12 = 2x + 2 : 2 </math>
  
:: <math>\Leftrightarrow 12 - 1 = 2x + 1 | - 1 </math>   
+
:: <math>\Leftrightarrow 12 - 1 = 2x + 1 &nbsp;&nbsp;&nbsp;| &nbsp;- 1 </math>   
  
::<math>\Leftrightarrow 10 = 2x | : 2 </math>  
+
::<math>\Leftrightarrow 10 = 2x &nbsp;&nbsp;&nbsp;| &nbsp;: 2 </math>  
  
 
::<math>\Leftrightarrow x = 5 </math>  
 
::<math>\Leftrightarrow x = 5 </math>  
Zeile 91: Zeile 91:
 
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey"> 8 + 9 = 5x + 17 </u>  
 
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey"> 8 + 9 = 5x + 17 </u>  
  
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">17 = 5x + 17</u> |<u style="color:lightgrey;background:lightgrey"> - 17 </u>
+
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">17 = 5x + 17</u> &nbsp;&nbsp;&nbsp;|&nbsp;<u style="color:lightgrey;background:lightgrey"> - 17 </u>
  
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">0 = 5x</u> | <u style="color:lightgrey;background:lightgrey">: 5 </u>
+
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">0 = 5x</u> &nbsp;&nbsp;&nbsp;| &nbsp;<u style="color:lightgrey;background:lightgrey">: 5 </u>
  
 
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">x = 0 ... wirklich? </u>
 
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">x = 0 ... wirklich? </u>
Zeile 104: Zeile 104:
 
:: <math>\Leftrightarrow 8 + 9 = 5x + 17 </math>   
 
:: <math>\Leftrightarrow 8 + 9 = 5x + 17 </math>   
  
::<math>\Leftrightarrow 17 = 5x + 17 | - 17 </math>  
+
::<math>\Leftrightarrow 17 = 5x + 17 &nbsp;&nbsp;&nbsp;| &nbsp;- 17 </math>  
  
::<math>\Leftrightarrow 0 = 5x | : 5 </math>  
+
::<math>\Leftrightarrow 0 = 5x &nbsp;&nbsp;&nbsp;| &nbsp;: 5 </math>  
  
 
:: <math> Da  \mathcal{f}0\mathcal{g} \notin \mathbb{N}\Rightarrow\mathbb{L}=\varnothing</math>
 
:: <math> Da  \mathcal{f}0\mathcal{g} \notin \mathbb{N}\Rightarrow\mathbb{L}=\varnothing</math>
Zeile 117: Zeile 117:
 
<div align="right"><math>\mathbb{G}=\mathbb{Q}</math></div>   
 
<div align="right"><math>\mathbb{G}=\mathbb{Q}</math></div>   
  
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey"> 9x + 5 = -13</u> | <u style="color:lightgrey;background:lightgrey">- 5</u>  
+
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey"> 9x + 5 = -13</u> &nbsp;&nbsp;&nbsp;|&nbsp; <u style="color:lightgrey;background:lightgrey">- 5</u>  
  
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">9x = -18</u> | <u style="color:lightgrey;background:lightgrey">: 9</u>
+
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">9x = -18</u> &nbsp;&nbsp;&nbsp;| &nbsp;<u style="color:lightgrey;background:lightgrey">: 9</u>
  
 
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">x = -2</u>
 
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">x = -2</u>
Zeile 128: Zeile 128:
 
::<math> \ 3x + 8 + 6x - 3 = -13 </math>
 
::<math> \ 3x + 8 + 6x - 3 = -13 </math>
  
:: <math>\Leftrightarrow 9x + 5 = -13 | - 5 </math>   
+
:: <math>\Leftrightarrow 9x + 5 = -13 &nbsp;&nbsp;&nbsp;| &nbsp;- 5 </math>   
  
::<math>\Leftrightarrow 9x = -18| : 9 </math>  
+
::<math>\Leftrightarrow 9x = -18&nbsp;&nbsp;&nbsp;| &nbsp;: 9 </math>  
  
 
::<math>\Leftrightarrow x = -2 </math>  
 
::<math>\Leftrightarrow x = -2 </math>  
Zeile 142: Zeile 142:
 
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey"> -9 + 6x + 2x = -21</u>
 
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey"> -9 + 6x + 2x = -21</u>
 
   
 
   
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey"> -9 + 8x = -21</u> | <u style="color:lightgrey;background:lightgrey"> + 9</u>
+
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey"> -9 + 8x = -21</u> &nbsp;&nbsp;&nbsp;| &nbsp;<u style="color:lightgrey;background:lightgrey"> + 9</u>
  
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">8x = -12</u> | <u style="color:lightgrey;background:lightgrey">: 8</u>
+
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">8x = -12</u> &nbsp;&nbsp;&nbsp;| &nbsp;<u style="color:lightgrey;background:lightgrey">: 8</u>
  
 
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">x = -1,5</u>
 
:<math>\Leftrightarrow</math><u style="color:lightgrey;background:lightgrey">x = -1,5</u>
Zeile 155: Zeile 155:
 
:: <math>\Leftrightarrow -9 + 6x + 2x = -21</math>   
 
:: <math>\Leftrightarrow -9 + 6x + 2x = -21</math>   
  
::<math>\Leftrightarrow -9 + 8x = -21| + 9 </math>  
+
::<math>\Leftrightarrow -9 + 8x = -21&nbsp;&nbsp;&nbsp;|&nbsp;+ 9 </math>  
  
::<math>\Leftrightarrow 8x = -12| : 8 </math>  
+
::<math>\Leftrightarrow 8x = -12&nbsp;&nbsp;&nbsp;| &nbsp;: 8 </math>  
  
 
::<math>\Leftrightarrow x = -1,5 </math>  
 
::<math>\Leftrightarrow x = -1,5 </math>  

Version vom 15. Juli 2009, 08:37 Uhr

Deine neue Lieblings-Merkregel zum Umformen von Termen und Gleichungen:

Rechne immer Klammer vor Punkt vor Strich!

Wie bei einer Waage müssen beide Seiten der Gleichung immer im Gleichgewicht sein. Dies erreichst du durch Äquivalenzumformungen, mit denen du beide Seiten der Gleichung einheitlich umstellst, ohne dass sich der Wert der Gleichung ändert.

Haas Balkenwaage.jpg


Wende diese Regel nun auf die folgenden Aufgaben an. Beachte immer die Grundmenge, die rechts steht.

Wenn du dir sicher bist, welche Äquivalenzumformung als nächstes kommt, darfst du durch Markieren des grauen Feldes den jeweils nächsten Schritt sichtbar machen!

Erst ganz am Ende kannst du dann dein Ergebnis durch Klick auf "Lösung anzeigen" überprüfen.


  • 3x + 10 = 19    |  - 10
\mathbb{G}=\mathbb{N}
\Leftrightarrow3x = 9    |  : 3
\Leftrightarrowx = 3


Fehler beim Parsen(Syntaxfehler): \ 3x + 10 = 19 &nbsp;&nbsp;&nbsp;| &nbsp;- 10


Fehler beim Parsen(Syntaxfehler): \Leftrightarrow 3x = 9 &nbsp;&nbsp;&nbsp;| &nbsp;: 3


\Leftrightarrow x = 3
\Rightarrow\mathbb{L}= \mathcal{f}3\mathcal{g}


  • 9x - 18 = 27    |   + 18
\mathbb{G}=\mathbb{Q}
\Leftrightarrow9x = 45    |  : 9
\Leftrightarrowx = 5


Fehler beim Parsen(Syntaxfehler): \ 9x - 18 = 27 &nbsp;&nbsp;&nbsp;| &nbsp;+ 18


Fehler beim Parsen(Syntaxfehler): \Leftrightarrow 9x = 45&nbsp;&nbsp;&nbsp;| &nbsp;: 9


\Leftrightarrow x = 5
\Rightarrow\mathbb{L}= \mathcal{f}5\mathcal{g}


  • 12 - 12 : 12 = 2x + 2 : 2
\mathbb{G}=\mathbb{Q}
\Leftrightarrow 12 - 1 = 2x + 1    |  - 1
\Leftrightarrow10 = 2x    |  : 2
\Leftrightarrowx = 5


 \ 12 - 12 : 12 = 2x + 2 : 2
Fehler beim Parsen(Syntaxfehler): \Leftrightarrow 12 - 1 = 2x + 1 &nbsp;&nbsp;&nbsp;| &nbsp;- 1


Fehler beim Parsen(Syntaxfehler): \Leftrightarrow 10 = 2x &nbsp;&nbsp;&nbsp;| &nbsp;: 2


\Leftrightarrow x = 5
\Rightarrow\mathbb{L}= \mathcal{f}5\mathcal{g}


  • 2^3 + 3^2 = 5x + 17
\mathbb{G}=\mathbb{N}
\Leftrightarrow 8 + 9 = 5x + 17
\Leftrightarrow17 = 5x + 17    |  - 17
\Leftrightarrow0 = 5x    |  : 5
\Leftrightarrowx = 0 ... wirklich?


 \ 2^3 + 3^2 = 5x + 17
\Leftrightarrow 8 + 9 = 5x + 17
Fehler beim Parsen(Syntaxfehler): \Leftrightarrow 17 = 5x + 17 &nbsp;&nbsp;&nbsp;| &nbsp;- 17


Fehler beim Parsen(Syntaxfehler): \Leftrightarrow 0 = 5x &nbsp;&nbsp;&nbsp;| &nbsp;: 5


 Da  \mathcal{f}0\mathcal{g} \notin \mathbb{N}\Rightarrow\mathbb{L}=\varnothing
\Rightarrow\mathbb{L}= \mathcal{f} \mathcal{g}


  • 3x + 8 + 6x - 3 = -13
\mathbb{G}=\mathbb{Q}
\Leftrightarrow 9x + 5 = -13    |  - 5
\Leftrightarrow9x = -18    |  : 9
\Leftrightarrowx = -2


 \ 3x + 8 + 6x - 3 = -13
Fehler beim Parsen(Syntaxfehler): \Leftrightarrow 9x + 5 = -13 &nbsp;&nbsp;&nbsp;| &nbsp;- 5


Fehler beim Parsen(Syntaxfehler): \Leftrightarrow 9x = -18&nbsp;&nbsp;&nbsp;| &nbsp;: 9


\Leftrightarrow x = -2
\Rightarrow\mathbb{L}= \mathcal{f}-2\mathcal{g}


  • -3 \cdot (3 - 2x) + 2x = -21
\mathbb{G}=\mathbb{Q}
\Leftrightarrow -9 + 6x + 2x = -21
\Leftrightarrow -9 + 8x = -21    |   + 9
\Leftrightarrow8x = -12    |  : 8
\Leftrightarrowx = -1,5


-3 \cdot (3 - 2x) + 2x = -21
\Leftrightarrow -9 + 6x + 2x = -21
Fehler beim Parsen(Syntaxfehler): \Leftrightarrow -9 + 8x = -21&nbsp;&nbsp;&nbsp;|&nbsp;+ 9


Fehler beim Parsen(Syntaxfehler): \Leftrightarrow 8x = -12&nbsp;&nbsp;&nbsp;| &nbsp;: 8


\Leftrightarrow x = -1,5
\Rightarrow\mathbb{L}= \mathcal{f}-1,5\mathcal{g}