Quadratische Funktionen und der Parameter b: Unterschied zwischen den Versionen
Aus DMUW-Wiki
K |
|||
(11 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
__NOTOC__ | __NOTOC__ | ||
− | [[ | + | <div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;">[[../Einstieg|1. Fußball-WM 2006 - Wasserverbrauch]] | [[../Quadratische Funktionen|2. Quadratische Funktionen und Klippenspringen]] | [[../Übungen zu a|3. Übungen]] | [[../Quadratische Funktionen und der Parameter c|4. Quadratische Funktionen und Volleyball]] | [[../Quadratische Funktionen und der Parameter b|5. Quadratische Funktionen und Fußball]] | [[../Quadratische Funktionen und die Scheitelform|6. Quadratische Funktionen und Basketball]] | [[../Endspurt|7. Endspurt]] |
+ | </div> | ||
+ | |||
+ | <br\> | ||
==Quadratische Funktionen und Fußball== | ==Quadratische Funktionen und Fußball== | ||
Zeile 6: | Zeile 9: | ||
===Augabe 12=== | ===Augabe 12=== | ||
− | Löse das Fußball-Rätsel | + | Löse das Fußball-Rätsel! |
{| | {| | ||
| | | | ||
− | + | <ggb_applet width="850" height="400" version="3.2" ggbBase64="UEsDBBQACAAIAJOUWDwAAAAAAAAAAAAAAABKAAAAZGI4MmQ3Yjk1NGU2ZGRmMTE1Yzg4ZjMwYzllYzYyM2JcdG54MTUwX2Z1c3NiYWxsX3NjaHVzc180MSBiaWxkZXJraXN0ZS5naWbteVVXHFywLIFAcPcQ3IK7uw/uEjw4BHcbgg4e3N3dZXBncAgEd0nwIIMPcvLd8yfuw6nVXbWqq1/32g8dpa4qj4FKigoHB4cBUJDR/KdJ/zoNGeEfw/NQVcHBIcCpK2vL/rNmlJQ7ZpRmBZT/8Pz6vGNmRllAubNDuVPwb/Qv+Ef/hTsFlAVm/9jsX/6vC/6rgp1//v+5f7sFBf87/W/vny/Y+Zea7fwnlP9r4P4P/4f/z7Bs1dv8T955aKpqwUn8WbGGgyOVBMhIavusnRs5WKwL1CHKRv+abMopMSzv8n59u8jqWehc4Gm8paeLJqL8LSK0memYZN27IZDKuppYEIpwCVcy+dXnajZP0E+o//S5gSirBYRpVEMTSYjE9HLPnDH8OHnJSVOxyrWCWUAvXBVzN0Ivy950lKy04jX8ISDiHLnU8GT61ZkXRbHBdurzO5++/ibROHXWhVdnHruFDsaQew6ni7byT2Jt43eYo48nF3vzOi2UoW6BuOnlJzxr58aeEI/UI0G29T7EUuZzJg/STnSzqwdKVTjvBjP0V1ZG40zE4Ks57XKmwmkU79FuFYtJ0/fJPnWyXmjkxAGxcC0kOG58g5SvhH4XMHga9LeMNmLHsQvL7O/CrAlynOBsfu8c9eY6kXIKZ8EcsJs77Z6dj3sKm9hugdwlnJw4Z3YbWVLul6z9+R+r68JOB6zYINX1HaE+46Z63+aumR84sI/gFEd+hePwQQo1CSTZ8shNI/KdbZDxSNFjOj+/XfxPQ3J6LALH9vjPFPYganEU6BK9McY+qX0G8zHF6DpA4dOWqEdFzp0zmetqACbXVCrDsw0Pi4bhS29S0EKbLKyMMYoj8n0CclHXTcs0SQ7N26ioOKI4t78p7/hnGRLa7zkhFYcQ27C4vBcYRTwMwSjxQbQ7dT/NVoPvZxRJBl5iNshet9yepfd1yF9puG/9WxZ9GWTyzpFMT2VH7gIsgovL84MH7C1v26EHB7vhpnCANNEsQF8d1avIlET6Bjpdc1C7BFqHLcxRV6iYapBW6B8rPyBYLPVGAWonhLHXhUdXM1C2HMsrMnN4KQ+tlnVV1++nfxWH42KJypeK0Oy5KWhYX5DdKDbhOyWRq3Fby1YfdrSoO/1AxM9AWoOP4FeEB32kcBoutgh6L4Gm2Z5sKxlwBjWfs8TacTKM5J/ckrCI5CHAV7eKREaiouy7knUNhXSLIq7ib3cnAooLryz10SO/dfcMOjiMj6Xc6hkPRCdnbo+V6Cb1bq7RNbbXnByvQcLbdhoNinqRBSrPasnk23vN5r3Y/IIgOdd8OsxcKR+onU3Q7J516XdnUWIEVpwgrhd/+Ybp58ip/OhEM10Y8N6A2doAT34iXfRi0SjHaXlOkimp6TIEu6PFs4OwsiiBoGZOTPn1UM2A3l/pAnOsmdmcGu2JWwl2ZbYM5K7kI4/LNqgpNoKqZ0ycBYcK2SUu2oiM3c1aTZpG9zQ2Q83CZrNSlcZ/UUOt2ABgTL46dmKAYnMBFF0MdWgFelp2SLCDhl8seRuMKHBC7aBCpl1nklaJXct2Xe+8hVdhK83VPo8jbBzXqNoKpY1Uzqr4QycabEP/TngLiWnz6o8Tf9WUXE3Day5Y73F7TnBVwoPEfAxlpiWOVjhrT1tGCL6aiR6qFjSvYhuUBCC6doCHwmk4chnzuW3IpN+1KE2QcI2JvwK6PNOs3ogYgpySfbfH7YIlreNqkoHeerKijBip45hBd/JoQBkyoOpkjOBkm7dZ+tcxmV9nGXEWkemdbz+ItRcTsSo/25cFRQP8i6dWFGP4qKaM12i7l1AFDCcuiLZhtpllbsMH8TzfTLdLRGU6myX21tZIXPc06s21uJnjtP905U4D8wT3CSFkns0vCxEv3Mqde6NeadiDCfLFo8rQOu2s37pshq5DdSMP56IsGPGQCHk3ruhUr7XWetv5vNvAVcSwo+C+hSUujfSNyE1XMn7r6F5ZKvvvRtaCeFecDtoM09f29OfOgmp/xvzCZiQ8E6UJr2q4bc3wAe5h11ffFDPNcehw6IVnkxJd93VgX1b9FxST8zgeC9STzWlcc0Y2Ki38UwxSdeSIO1bBT1qudZ7812X6OsbvApN8ey4V4/E6rEWyeBFCPsPd9tLH/0Bcz60qblgi5CSu46iHzuGtcC8VoG8/2EpX5JA1gjsCP0HO5WdWvXjS6+oIu9zsmoL3l761SIWB42ww6dvS2JsVS7LSE23xC+dvUNmdGHHQ60NxHajjBZGdCEI9bpQ7i4ywY/eKCTbGWtrHNUoVrMAuuq0ByoBX+HwNQKFK9BVVzFuNwSWC0dqp6KjBsnRS/FnMjcjTWWVYzZpkmTyIjNzyF/ORhuOgXgN8Sz1nYWQD0i1RdwzXIWb9AB0ZJ41Tl0wpvLVOeqIcTOBQzDikxorf8RR9oJKAMMuvw2IjFY+mPPP9wk98yJWAkcwZV5O0hhg3u3GU5reJItt7RKWWj3REaFnY7usWZarJVu7K6yno1E2TmSNp0JSh7kaoHDL4YYKTTgYVlNPBofG1oylTNF6AUHbfXXmtma4rtygKIyoztYp1DV4pecBRDDCHrGC52BQnb1cvtKdFCs0jkK6NzlOL4t3w7PnKFbc/clVIPMpoV7alx7l3QwY597c3JMitOrTNkbMn9pyyRCuzi1nu6rYSjX49U+DJh9fUCCNSY3Xmd8cv/sGrZrDQ7ihsos9UUaKzRWnRdv4DefMFmMp3N0pU/yuMMQALXi05+NdF4myUSOoXR5k1vWFHanAiAUh7eQg5SchF65iNyoDu4p27reHVCIGYirU49S4fOuA05eivFzq3uS3Bo+mG5cyJonS0oOxxmceJ/gDOm8JTY9C97Lh1qHNT7zyKq1XFyjTNr1wpJINa8LM7zv0v14+LsckTo1HmJ+8Wf5qRFCAl/xYA/w4UArccEiaVhZV+nDUArJVEdaVsf0mPQxu1nu6cBIgKVCyWQe6ttIevyt/IS0Xtpa6xXrS+HPsHKPQPTqPDOiZ7aZvY4lgw37g9Ri3w1ZMyGBzs0/S1gq0zitPOhD/Vm4q96sx+fipT0qrBaJGSJhOyK9Hg1viEyX271GzBZr5+z9j4ptIMp1B0L6YHXwVnBgARSjpL7Bc/k9sAXybZVvCSw6CEG+2kdqDY+eyh+tObcW0SxLW/yBkrC5FcAiR0cTqq3RRsdEl1x6vi0VCKl4qaIKkLZrzN5g7bc1j2TnuL76Vj7t2qyjGMB8a+m2FUeg4TxvMqUd97PPXIm+/Suzr6IO8RjOeWJPC1OK/A7WhqfhKH7u3nQltCxYekTO3obilZF92+fu7b48UqY2Mhki6RCSrd9tExS9oM+lfKK0N31y5COdkYkM3xwkEodT9DnUlT2vH6zE2h4tGR30RwOP128uraULFtwq+uQm3fLdKVwLTVGMLl50IDYABuSOZQN2MT+njL21Au2v50gbzP3fqswhxR6+fXKrj6gyM3gW/6SFBNcYwdZm8Rbn8VFfML1/lXlH//zC2DNqwjf9VvHptAh4haOcvf3YVSskAGqqWy5j0lqTJBwYFbR7Hakh9v4+GV/3LHdmZ1FaN78kKAg5Nf04tQte5isQ5JBopqkCYf+ENXl1XzVRhLTcAeu7Pav8UAD4lqffIzuVgqz2LSOnXFYPmcMnXLidaNg0nWZ9oUPkrLIZSi5kef8fXpQOjHv8VvRuYRbs0OfOLjJRgT9WoDFtqGLhVneDKHYhX8zrEoXDPr+nWbi3peG+TXNDA/IX909rNfOY6QsTii/ax3Id2lmnBSSFjAmnivpD+LGmtD8dIW+fQVlR2FhoxDDL1mkg17e8bys8ItjD/VHf++Xj3Fn8abnoXK5gAfkxxzqAUPNr0Q8xfO8qQP+j4FyK0Tc433u76txTNPkVD/LciaHO+I+v1pEhxFvb+5JI8j/sdgflw9rK++0S1Je2+AUy3r6JHZ4g1BUd4Zp96LeAHnAByOc4qLoKfnJN1ZNXv1XQjYAehI0/x7kJuS2dTTNqeNAXwOuq+Pwc0Wqd+EZbt5dNUd5bh/hnxdHHkitiJyHPHIvazZieUPxJ3mp877xME3QIif1cmbbDXpkJVSE10R2n0oRaSf41YdQWdYE2U1lPSRH79oxjM381NJWSRq4Tf7TiuHrApAEb1aA3GgCqRWKA8toz9PpM+ce0z148qEn8UPnZRFNgr9TDQOeb8beYGmYf4/VUhB5lqmPWUA0CaTuEv3XptQCnAQrZ5xYTajjbtSS6uqRlQynZwKn9GsStVaXnqJ7OXioerG6fU3t0tQHKFrV4d0BjWvEgtLYLUof6g2R4lVbfy9NArKTW8SBAN3w12kF+joKkXFXQI18AZq4lY7dAotbXoa9CEYp3NsxIBrjpk5AukrWSAwQWt94Cstijc5NIcEb7hoVrmWlta4XTR1KQYcRlrEz3fKzMWQPI2kspDW1+UrCwk8ZJCnBsyTP2Em/PE2OFYkiMChVfEMlVaVlanyo006wK2qfR1XqvrSj+qfoFRSopz1nvlGjJDGyFPMgV2R7ySDon3u28e2CioNnIlIYxi3SkgL+7S1wSinqdsui3X5ASMr6TB/nTqAjNeuzxHf06Atg45YuTHmKX+cDvxEzTTUIDULx18pfI2BWz37PZPDs/MdhAxhai0mwTou5smm6Fc6S96Hk4tiHI5ZvUbDDdxdyub3pB+btfWpT2NQsEJiSuIPnveHLn78KhVcTmRIvWmmggC1v36VfYUFCgrBKsQPYtl3+tHnml9tit47ro5UhRfFpORjcEbKdGw840Tomj6LlZi182XtgsyfCu0+adOKtuoE+BNS6JBS9Irbt8DoPTdmoqqD9AVf9KULNXjcdcK8VsKk67x/8dI/OYDrgJXkS77ywvP0gyyG93g0M0SblV+iQu0+4EJGLUUcW920REaUlSraK5AeWM5cur/72F8feS0/KyfXJa5jJqZam/9lAbV8MY1FeXCeGM/b66vv/pAT47tGFhQCWM5wU3+OL5fx62EvX2l3Im1tYzzwizUpoO9vX6LEn6xRnxMYEOvJAyzjhWrACKP6mGiIMrml5htWOPjLrgKlIUGYC0eUaYyqzsI8hqqqUhPn6UTZHufWSAh5MxswObsDtVWbYwDp9tDwvVxSMiP+mJg8gyyUKIzplB1ExeUAAWFE0dZFqbHbah0Eiky1o8tzsWimpKIlDSsiGTj5/CBq/GIrOVnzszwm9qDjbr+FVOTQmNNBqRN/XJa3cQa62gnUIJLViLyS11hb5+QBXLYNLQvrsTwHE19jfkL6EXB7Wb6VOjAOVlGjQSDwgsxXeODjbBkQTb412L/CGM+1tk7ca/tM5PVFcIYQsqhn4nW9aubcjDUbxzC3dcPoalXbKVku8Oubb9zLUvYiGT2osy+tYlN3zTc2rXKf/n5NuMj49/r3D2zaxzkH431YO1ZUOZz3Qwh/0/RgN4HIf2jC/L0EX9+1szT1Hsm+ZbH0qAjPXB6NmA8UMeGpjDJKYe03tSh1efMb3kJ4OYNcjFwy7hFGuEwWmnnPalUAv8cCq+vJr/vvPPL2qdRgZiW+QqVi0tEUSSlcGkzi9j6vIVSNMiBx2WMmcT/QLt1x3gAu/VJX6LoLLxqpsYtYVY/4T9cUAlbWaZRASSvZfItNB+4FlbamCOuzQD2mjkD9AC97yGDn8/EBFC9lK04GuWAH07ya/4+rX1n6O9AtNgm2dMVS4AmnA6PP6LJvv7L1EPoTcH4fwOwe9JDvmqEIfGBT9D9yPKlEFWoyRDcdf88VysbOSj1o6xal36RQhsi4xTk8v8YJpUEuOr1AFp8KQGOZlNvGn+Rh3hhaY7vT/rnck/UpKOxXKOAiXsyHEejTPZb55EDcSyyssDNuOi2fvxf49bKAx2+/q0yJzzW/BY47jZBKcNdUonkMwznatuVT/UWXTvb9tv12jHCZMazuZbTEwZ4ET/Ayf7GlCH+IOEzKVwGaCLQOZZOuKDkgqMaTPw3b8/SV1xcLoxgSl+hCd5VSE7WM8DbgbfZPVl7SVWsuKVhJOx8RYu/N8vBEHQ1brU45bclGMUMP5Ckiw0Gzz3uonhfvhidt8+wx+jjN50LaEwITvDf4qiwzWphRbej0d9Nrs5XjL7tQNEjUF2osbsKCT7iG1Eik7Ken9JEaHR47Codk1+IKmFky6sWRllu5s7mvfLJduIDXhcz26UgWZGHnv0TQnrMKOwAGFvg4qN1YFb8wnFej98HF0m8MLet2Ay5U+4lONeZCKEdrqp6/4vI9adeOkf9hTRR7t1NXVCdior94oIVjT0sr1kH0/JlDINMaH4HlPPCMWnw4bvYdT2UPG+vSMgjt3LfqvA2L/qffndguvh18PRFuAkaURk3K/RkVWVqsHLq23cYOR8yQOI1AB1XGom+WhKvi3c2AYGMDd0Rm8HvjKHi6TgO9kS2b8KPB4x3f6sQDHFYOmZXwcSt01P1NDuS88pt9il8SRYi4r2S09I3kmrHqZrzMhV4pxY2jqfFZQujVgM1J/ByyT2K7BmB7yvUU3d8uQ9ennuAeUyOjoUg9c81iCqd6lFJBDi/OU2TF41XUuNj+KRaOkd1m1eC8mktfif3vBH4XGbT4J87iv6qyzFNwQRIReCgRTOGZKNylrKSewW02xqgqkWCQM6kTPSl8jdpCctTOZjRCEYciwUGEZgbFYpbrFUnjfEs1DyL/p3chmub9hRvKqhnSV3I4OCzIU5GUfjsZHnJzL+aKu57HSF8tTNjfnkNxy8dozFlaf8KOnt7zCGAzeHLV5hWZNkUHlI7noj6zrYYDlEB1H0+OURStKxg5K99ff8yzQXNTQlo8sujgLjTGyE7kBB0YXz9A2Q8rd6E/tDTV5hxCi90gkwM/8uwUrJr0vvfifieXzrettsWh7L3spps1hzNzylZoT2jnqKq5I0ExXmxO+HQUGR5LbdmoxUgEgt9Wdnyf34l1SxcVAqKypPlw/eWMuy+O8Q4bWTr03RZLR7Q6zTds4t89Rz3eSBPCkEe4yMDllEu5DZ7XqyHksgAfZXKXWZ34IyF467fd/UTxzGgmrE/AGiyc8D/5tJ0S8NyY2g3D+fTdmAzoaTWA9yIxg2w9BcsYW5EGoVriAfEatnn1MeZmxHT1H7kvggIHywLyJVAybfBfY7TtIxdagGEArrH1ocG4kC/pR9+FlhWosn1OTnm7fJRCjK54FoMT10Q3UPSdwhQZy+pKEsxZJTpCZN4I3knVW4gwN0Xr3bahPY3mJRfNdGvf0ohzRVz3P12GcvZIvShZsPwO76excnyILe0ueDHMULjMZaz4rGe2ZUSPwl/19FDfFeh6tT5CL+VVIcIbKECUl7ZUP/K6Dsp7N49FAmThwNusRcHUtsHwxtK8rIKoSY4RkbN9zRcLJd7Sh7DMXBgF6i17wChsmsX76xd3Oc58DMjov/T8lc6m1m3yKZb+DZEj0C4Wz9QjCnuuYu4xtmmgtGQpXTZF/ouBKdZ3y2Gm/+TMM9M5ZeJulj/8oS/hSGiPov7h89RonbQ7iSTVYdTXUPpW2sZI+Dl5yj8kcdKSYFh/2W04iEYCd3559ehWQsKZjnL6eKBH86DP29h0muow4Gna7Gs+Mn4NNKDJkp8xdxvD0iRftIYKbc8XMSLJy2axwy/gYBhyOeDLfrCw0/t20xPe9Fh6x8kgFhBw6LScXOigPpLOf3S0hZc5AT85iEzYkkgZHkemk8DNfvh9wlGSApmh8MduL5hf64EISFEMd392r5JUhnweXQqby8iT01Q6bBTCk98O70Km+RhOiUEQjY8FjVICBG1bJqI/auY3h6JL1PlqiMth3tslQWD6ge0noO262ckJ1VahHwY+1G1ou3MmbEuTv9E5o6So+39SGTL2JZvRSO5B4YNLRpiYHJE1cl3RCnUv9+Ijgqdsxa8po7cRUKU7XxgozE09TD/7q3dim9gQ9NXiRPMhlpZxt93BlURp5GvEzWpNV3pEg0Vhsg84mAoLijPRhn65jxf8Yb0YUL4kYvwDSVgcAv9ZUe38rO2ctpYiDSo13YG2E7Brecs2eQdZUZlZTp2zKs+XsoGYYwRF5ideyJLh/rEMy+ghdYfOkux8OneGfICaze4W0nnz58CJaAa5VfyymM9f8f7QmBLSqOYBH1VeStY2g5RLOkzj8C8XuT7ZGjDY2W5PCEKJHQS47IdU17VOpNana82fwO1Q8AgUG0hll9t+OPYC6djrYWddx0payrhqdaBDTP2gXz8LlkXDreIPuYRWyaiPO6CJWRWGY9uz/WkV6g1PlDxvgA2mjdI9UbFr0kbsAjSG7amTvk+yn1NUbbYFtbuwgz22bG6kjobn1uzkkivFUBiLEi5bSckN+28BcXyIfS5VjyI/1WsLNcREseUToqhZ6G4gCW97Iqg72WPIVCO/gO3u80liRvJaphz09A2bdT3sQoWoraxhT6NUL88NShwN6n8187GZvcXdDBNX1eNcTdufjCJGhGj+hlURjzNHQ7bfPVpX2gRR5TpL7MkSo7WW3Qg87s1+0E1AL/E6/3K8k0sz0thv0dtyffx+IkrOq8Tf9suDZmyeguqN1PupmpMqZdGXiIt2YzBh3OBKafZdeLEadXDj0gdCk2BUPr9yojzOAzSWQ0o84G/sNDrC5NqzSL8K95o/PMUX+7N7K5n2Hro/FMP0K1QpHgpfqkfN1k3LuK7beymrUTy7kYXC65ofntb6MK3KLQvvSq0+i1Zat7WxgNWyXF1K0b9pp52ueIfYzQ3AexR3tr2wC3fCRuJ4wMqcaVnG+pX4QqHVZFf1UmwC/AHL+/eO7H9uRpUwa5e6XfMECiIuaPGADwO6z62h65wGDFRPK5tqSCKWuVFr0y0r3Rr3KKw8fID2mrju4dxaEyg576n2IGS/2foDcMCII8d/vXBcDxSFEiYhqhhGq5C0kmOjS65sAot9j4tZBa5PovoNMgUGjpNNtDZbcGGvHBAHkOJtYJsko5126SZ6bPd43Lvs2YzKPyl2pND+rp7iKcQ791E86rZNMPwsXRv0npNWVOREQxK0GAX66a+QpyGtNxDEv3wjDXX1b4jXGKcI4MS4AJGCBFoikdcf5Pg9NRHykUtuSlTXw2T3sZTHRPerh/vU2zxi/2hHeOh39HTGdxTwl2dQlQGGI65BfRKXSW9SzUyn18uiIzfy83OgU9tgdooy26g0opqFoKu3k0c8IPVDUPLr0+EbnGcNaVr+1z3x/y5MAFlVmTops5D/AVBLBwhhPcRfGhsAAJMdAABQSwMEFAAIAAgAk5RYPAAAAAAAAAAAAAAAAEsAAABkN2Y2MjBiOTlhY2E4MTI5ODQyMjhjZTZhNzgwZGI2Y1xmdXNzYmFsbF90b3J3YXJ0X2ZsaWVndDEgYmlsZGVya2lzdGUgMy5naWYdmnVUG8/XxqGF4hCcUNwdghOgQIDiUrw4pUWKEyjuRYu7BCe4fNEWCVqkaHF31+Ba4OX37nn2rsyduzuf5+yc/WMiNdUV8LApsVFQUPCUFOW0Xo55L7sv5uuXOH+sooKC8hpFU1VHHuX/N5AlPRACBGnRQyzpIVB6sA/7zfPNyswKGAxmB9OD7djptYBaWlpgQ3p2LXo4DAayo1f+Ts9uCVT2YfeBQlEwMcFQIARsCQRjAkF27EBgdHIyEgYHvNy3owcAgMp27GBwNBBgBwDDYDBDS0PDXgQCAIBD4aP0lqDRlR3kCggKgCFXDGGWo7CXuAJAAgxhgBXk/wSEvTQBYFCAIRQA7F0B9K4YQi1HoS9xBQAFrPT+T7CVnR3l72BlCAS5g4QY2iGgQATUEAF6ERCh9SJDCAAwujLai5iJtgRDomEQBBJiiYQgYABLGACBBFgiAQgYJBoKQfRCLHshCCjAEgpA9AIsewEIqB1MCzIKAYxCIKMvVQB2dpaQlwaY4Q7MEAqD+fh8h8ORVVXwZDsA1BCGhAOgcAAStvMCoPeFgSU4GZoMAYKjo7/bgQ0hhsl2YCAUjoQiq6DIHehoFXR0BxMGwYQBXvCwg0DRhpY7UCAS8ZJhaAeCIaErCOgLGUzkig/MEgl7iSsgJMgQBlpB/k9A2EvO/9JgyQDD5P/xAfWu+EAtX/r5QF+oglZ6/ydYL3QFqQVEahkitVZ6tWBILVjvywkMjoSDlF/cpwdAwAA7GAgO791BrCjDXsYIhiCRkGQkBAkDJMMASCQgGfkyqtEdOATZC0nuhSChgGQoANkLSO4FIKFQmA8ECQEgXwwAvJjX+3IJSN6B+cBHq+zsAPDRFTjyBQjohROQnr4XDup94aMFA4DAdlAoBAxHYQewwyDsL8/ZgSnDIeyQl/dBAsBIegD4pehLRQTADgFgh4BHAeD/OfFiAwKgjABgKtspY77k7fSCLAG9CDgE0Ag2BESD2QFawGSwXTIYMxmsrGyIya4FSPaxtPOBgbQAMPh3FBRMZSgmJgqKezGJ48sHgOqmpa6NIr0zZ4WCwrKpJCej47lw7OPj+3Y742RYRGQsmiGmEgjk1Pr+WZRICv53MZVIGduG6RpGdmRKNnG8fQTy4cgr/7nogIqu/jO5FI+b2yhvfQLnb1j8mz+okJ/wNK6fxX+ZNGU2mADMQckqEdxGqdRDqczHFzFMRvgnT+pBjg8K2QYzvZSIizbkRdvYg59l2N3hrFnH0/2Vmb9LwDDvruMhS3aZzSXc8I73zJiIa6jPqucsNnZPmi1b72kDwPXvXn/65rjl4PxAiDp8mlbSUGr/ebAnN+AfL2aXtKeXcWy/wpbzAJKAjWQw9tdkddH0pdn7wK+5S29Ttn9x8cb1+WQrp6i19lDP6Itujcw/H6F690Rwc9x8GxhS+IxGGSMu6y+cJ7oZw4bxyV945sa6souz+NmyN1LKf8Pimuumj1wfdptuAC5Xgcct53h5l/n3+YfN321sNR+wa6RpPChtj4WY+zVLJJ4MMves20h8/dJ6RpqGATGdcfIYxGMqdFX+8ygG+PekMkycK1l4sUF4MrRK87B6k5MoNYSUbOv2mPO5LRuA5jd42zR4q625XYX2DBNf7aLV3YcZPbd+XOLsn3T8m2qhFS8nbOdR8t4HlQVbQD2SGK+k5bFydnlWmp/mWwe6Yl2AXGBN9RpRmt7SQ+WN373w6YLfUePw891wlQm91afFKAfP+8pybvuOx7/6HcvNR+N9Z1IerPqnxw9OSrXQ3ns1lZx/DTc/L2VstvXCyqLV+LP0/P17fjxcV9JK6iP3zxPMdnvJL2X6LWtoAFI3TI+9rIP9o97bl06wpisN2jyH2Z++uY8LPQK9hBIU86Bl3/vOqiRcASiSfPZk8SZmZDEs13uc99nYYOaiiWDB3xRhNUYNDPNan/sRkuu192dRZ7dX44ndTlMGb2fpXcnPs9OrY0aqigJBXQ+nQo7N8RWdzCqfYzUhZMRQpBtd/JP2G4qR5ux3FafEp8LH76yfHNk66/aTlxYn6Fgjeoo7Fj7jd1Mp3j8LmijgDX34MrCvY6tvsciniks11ogWrHP82lWQsl9kw40DdYbW7goWi++RqkuMCHiFRi/wjrNX9janh36qd+fTjOQNhOn1t1VFkpQgDwZF8XhcuHeW9LXY5FOn0VtzCrDoVtbIiPxEmFEKUKtNbNuTSRcNqPKxKjz1S+5kjtVHp6Moq8kE4qclI5XEhsXdev6sIpGyO/KsffWOnNdKoW/EWiVW3v78qkWjyGFS2bGI10FGG4jjf/iKKmUT5HGAbRgSnXtVwu4I1Ss5Y1R3+mTbFKpSQCr1lV9pMXZ7duPM1Gx4qC750ulLYDLTyXzy1frTVDc5+fl5BYkCc4PmD1d34bVvYWmMqlNMiTTfyj3D8NrcUd9vKnenteUdNx8dLox0s1egxi34inZ+TjAWSj1o/FdEpVY7qpNa1iGP2nefWvhG+8+1wPucichrMzC+Qe87iv/C/x2PL0J12BS4s2G6vjp6qwy4vHuHofj3sKDrtgkq/N9zlR0ZqjcMTm71zb9fMQFZh2YY1xo1zsSgOO5PI0W/eHkWZcu2JAQCh5dO/3CQ/yfm42E/bhE0UcQp/F8gARef22J2O9eF2ftbhXT0dZjS2MQG+0RJP9dlscJx1usC0XkI9BMtlNOnaFUgwc/z/NYCVc/qcCtI3PFJ64u/apU/s+st//n58G5ZDeKqaq3Oz4cq+/esNKDlQ0ztgDFOnUEWzbee4aYO6H932npaoCa44mnHB7r0wcfxvksCDLZ+BJZZ+TtrggkHvDubTYUbY61jwa336MPTXYFX6k6cvS4eA7t2kd1Z1spg+3nu3AD14MW7t6Z5w3j8rceVC2GOAtLFNAW89XxfBDurNxueYgJMsNBSNCf+jIaupS7SHdmRH4k1Yo2nt5KVFyFC6bSOsq54duZ3OgaeAwJV1LtH5m/MXP0t4WH8w9SD6NWO7gSH15d9IVqHaunvHS1NVQgafmiGu/tsjAF3IJ+/5RRbM68UDRtgCn/HQWGim7A3zFDjNVeyB4mhRTsyg/SjT1iCP3gJz/BUOKWy8VW6uA+kKRuZBsmzqcMzgKwO95HtdyvWZpXP7O7fzEex8t+A1kN6n5pQ5kVUEktFtlQ4oJp/Iu828Ovz41/5FHARmXtWD26hwkMLaZnOemFlb4IrTf6sMz06RTGtlx7hwYlqvVqKF+oy7YTS5Lj66mR/cOpuelTy1X1YUMpk1+M+ug6+cWLoRFg0M5JdzFte5G476s0d2uurq7OjIv24p21l5kjkpEbcyCaV2RK+zuRle11wz7dS+fMlY8/vzpvn8paF4sHPtutFRlb8cB4rrhhROkjfnjfv6g5pVc5lGWQFDamG++bfRWsJ5KpQacxtbqrN6boHaRoRp1Ve9m1+o5sTGisUaT7KDnkcYPHNv6DUPUYObh9UPR029c9dMnz8yhbV2vjvABagF2uhWBsCPfLd0wt0Wmrf2VrxpNtqYOWG1V2QzjoTmCa3H3whxuGX/E/TfuKCb+gbFQ8hVPiL0PR/9vnpuX49EmefGIZa/K6bjPt2fG3AAMxhW3X9WHceftQBVfd2mu7rX20SFhp49NIelEQhPydliyqc5oRK458CxYUmycxlXx0jVGsE4i+0uKyMMr10IpvjZmVhmlHqt5fzQXJOycVzVXzqq/aeNP0io0Q1XDd1jtYF3J3vVxUZEqV5zNEpTOfE52D1QcsS4qVpRdYbfUtFVO5hRP0fuLraxrfhR+elS0JTyrXuxgGK+UIhJa/IS/USe3BCCfIJ3HbrDroTomi6M6KGxjUHrDtqjhlb3vLer5hHBZn7gecTM6Y+1EzHcx8UTzYHtjJKhOvi1CUU848Jbi2L0O5eM30HJ5xy/0f69XWviEGorRiPR7O2mkh/cRJUYZAfpGNOd5wecvLrmOjHMCI/lRW+d6MWAqVvhQZFWy1mL9IeY9Canhm0bW5caQganyGrW7yqZWG/qUzfLeg3u0osa9Vu/j7avdx58htWwftN23dD/TquSvSQNOyu5FsB0uGfwXL1nPLaHi0uO8k32nC6LLeFRSYDhy/vsdDaIn9VCku+gy5NmBkp8V/HZ9XRHcW+3/6+vOuITFaGitrWmxRdD4ojfmi8fn3+I3806I5SPdd9zOuEuWmncHYhMIr/UXWb9abN7g9r34hSxe9vPBJTOCO52bc0q/3GMZib5E6beks9qhK+H9/ut3xSXgiIuBp0QDZehy0FdZ4NRxpxflh/eFOxL4bWtVEk0GRO3JM9yiF6NofebIyiNemKb7Iif/zQ6fviKCbg+41iw/DXvK9Vi4YcAqsgMVSR8BLWUd955qaxRcbWOHvxcVp/jlaH+RIkl7D/tN0hcEUc+l8tMbl4Cr3U0taX66oKvrciDu9uXtOaNT4YL8701zSaIm7JxR98yaXWP04Hajke3GDF4CWJ9nl47RyG60u4+V9vOWyqmm8pxBm7Ds3p9x27HZqTbzj/86ZB237ayTwCiHfoyaf1b1APKXRbgL0EBzJj+5J5zHp2JrskAdic3NbEQ2UrcMnW3eTqFEaf4RXTEL8L/k1YDKQ0XOta7fjJ/mRlGnoT7Utu58TjGA5V6x+VIxXmjOPyYBi6mqG0BNNAy5XsIinDZExsypPtq300NDTszWUCYxSi9L0Qy64t254K3/ruMCq72kiI1LYkj1LaWaJBwmvF4jRch8fn3LQJPetB0j2KoK8N4ik6Sz8EGQxTyw5S9K+2lq7lxB2MpOtAQuMzSmya6zo6J6fFWkZvyEzassgz89QFs/doZg7tf+9d1JXbV430+WxvW8zbxrGTGZsyH6rDj34MSHxq8mAPotl+OtbPmcrRDsVqTpmR9QETpscxRptyecB9lxfj3lZScmW8Tm17U8VzEaofOl7L86DcMsC/VNuyMjFLs/Nl0Tp4+Ov9HsksvIOCy++98X9WNvDX3eL+W3NSMzRKlLlLf0FO5dm+fu+PBncoVWY39Ze/DeQ44D1G/66M4ByWAyGkC219Szuky9Dpf7oOiDU16BzCclzsW+10nh5K9ut5g90bxcMMrIS3jNP8bh2kqEsKRO4X9smf17Z+0lJnZMVLhIuenvz4vXFQPcF7WON/h7oj6DujcKpacHoOhk736/udX6otj8RJOdkQJ3nD2KO7ttsb9jP6HZ9GmDXeLUrMNMCFnlRy5724vplH79vbYo+LqWnfYfbbfno/VW8PJkXG77NEd8ji3+Dh3uotprgx9vrLn8ETywDHUv7PS19IZGMmlPhlw0luLusSKIgtZVXx8UFZFwUKPpbroUz75y3AXI1UjFfquaFTgGUNpcWsKczexfC3akIRAyryQTZyk5j0KSiHNFf5aCmevGwbbi3E+oYD4tpKrQ8SvdmqeL3vkq0Q13qyykwZM27kv7yPF74Y0UlgkXWHrLliung2eeQPa2rNZ7uSoBZP4LKAfhc2fLBs8PvHwIL1tY0OQDQupNZJjVp5gjeEcPUUjMY83q/IKh48uW7WVvfhWFepfbrQaL2R3YwZSNY8tEy7NiYyaiXzKPUb8UoJRPREkgmIZDaA6EF0Q6Nug2UNGkX7wmL27Z21GEopXtd9lGVxaikOSVQJ9mzHBmMDirW3IzgXZ1lWTU/9yKrlPbzdtutuXsnmjtz1HC/Dh9s/fsOn7V3sC3pWColuSQ8ok9xSv5ArJsi7RVoBKcTzJu1t7CP1oh7S2O8a22Vrfsed7v7Ul7NKwl3vxNpjTOdZv7C1LWvmLClmVeVdWBavk8Mbxa+k2zO2XlgC2mn9hPbyPCl2i6tJBNvA5xmXBdf21Ssdyo5HAgWp+0gBeFKaREWHx3a97CJ2z65bzkP+amx9juV516iLsLCh6fmf6e3TE6NRFA19e4nbZXLv6l/nLdo0HQ6/Rf6t23XISB3fHVJ2bQNZXMeAcWrLt/vURxiUQzNjGmMYjUl98wsFBESxAKzVggGc4lKl8i7re/nExIRtwpRYI7cHEiFbWt3EP58paVazTk7m61kfGydPEPY/9Dd1R+jaEqx55ycnl0X+TlriefWoVBxJSx/naFR5DFBnrvL9wBsY/x48um9X7xQkfz3oBdEMyGTDDKMjCsEMs/ia+AMz9kNDAucj1+IcH21pLquPrO109lXNU+6YWe5J16w+EnG0UjN+QRzxodncVmNMVxk5niNZ2tV5sp7UojdWFXXZZFXqxfmbQbo18RyOtMPhGxkmWFCr2jGevGImLdazPJzU1bGf3TOhXao1Wy8+EFglNsvwHb6rNpPzhw4HHOCIz3Ystx/dldghYf+We9ZNDjWep8Yodmx3859dHnx+EE/MSf0bWow7384QoM1G2OxMHS6NHjctOj7O9qfLqoHEa1yqusUUbvi+VX+wtvcg94gIOCGefS4945RqfS2iIWj6kNA4frbY5y4ixzVxRBTISimzFFGEIif3B3ODvYctXY7No7b24Z8zfnu1XB7jzHiCQav9cThPPt21sVfXfyIKXYfN5T5l2vhdIOd5A3D8ifdj1Ehgr5VZ6gHx29hBheMq5jsWqOwFZ5VpAEIpceGm+Ov39Qz8L8r+8LpK6Tl3a1wNcVar8iZQtcTdVYLycQt/xj/Ts8hVD9jTXtKz4cNU4TAUufgkYvowSeAY2PdegwE597uSUuy/w3y1K5UmJ8OrnKoSml8Pq6utXWICHnizOpsr+yKG3GP8BtMPP7Pde35L5bT42PvXh9eatG/+rK3wNbLESD/bCH+LiS0sA8BDiXglByL6VN8st4RFVL7QZkFkKognyydw+uVUlHpKWzTNz26+rhGkuV2eI0kW71PdPSYpibqEdh6U3lojol/xudUVp3jwd3A2X4tH5vm4N3RyxNLJ0CJzcf2YLBoaA23fYNrnGk0Eam0qqZFVaLeplQ9jk3bbWvLGGo+18YldPCkE+PdMbWXrS0janoRTtR0WD1WL2ljN+3iApBM+Ntr1VFMixB/r8VZ9WnzmO5a8FhPi3AIubnycajn7J6Czl7CbuX8YD7ln08jlnMffzbNvOCwx+pJiVx2q+CxjzBw6qpNUzyBlhg267z9rZa1ZW5dYZ2BZpdNbnoPUoSQV7qwmizM0jQn3idqJS/Dc5+SA7dVqYw/gxYczHA/xWJr62DpQbdT8rwMZVdFd/gMH1siftB9bduYW5xUEiy31/rWHN6qy9CxNNGGrpDsYr/YMexf7x/Pv71yr+CsfQ2uP/Bq7RftV3u1MZwoOOU/Ugt4ewhZqqLOqyIDhh4//7BHdU1L6lLl+/f3v6mI/Pi9NzWfEmTad/Fl3ZRmlQvOO+MHu+FnP4V+e0E/JdHP/TtjNhB/5iaieZIwUJL27Ana7wG0vNLNXW4VIrt+4+ctqGHLnaaSZ0jRtGKtqpr1evrQLTZp1KeKZOoTpVejNI1NbWeeSWL8WYthV43+0IOrwHusKqT7jxDc9OxwWoG21Xx7A2sEbJ/A3X5afrX4fO0Zr3Hg4nE3gj8zHy23RbX7agddwP3bvMMKZqcdmxfvsN79n69b5eFf7bVG8bcWcJ7btMWJX/YKT4vrc2zv7ds2TsVcSo/JDVfcoDPGY1ZHxDVvAmrZhJPFg+Giwp8iyrUgNX0NXzOGbNySDsuMn/7fZnRobjarJgMsN9PuWgd8tbtv/kvw9N3Z8bM+cPJ2F6qHTXy1eQzmhTP7FIkct0JZ/TyEbJCLyHCr+AdSyVLMCWQNDq1Ttd+L2a8i93bG57fmSKN6agC8JQZ9/fTUp8TvTG/oQR81ohOfT+I6feTssYx6sne03Z0HrYcsY3TnHGXrAWe2SARWLSgPz3C8xpvlt6R9m75p+o71wNhHXzL6t7r6k/RKF9dljuk8Xd/nmU7rsqlo6vsJ6wjyDfqPGFMFhtN9B50ftelK/3P+MNf2bg64Erg9l0hd2U/mGyLDic4OYymPUhEddotcdUs7n3NcZB39fQRxm3o382NRuZJffp5Ty4ZW6dzLTLSoQXNHl0pgevPtd/qSmv9oDG//Z73fv+piZMswZRxZXtepylL/Qp1vac9LKU37b9Oh4fzjJi2FdPm3Yv6WmEOzxhXOr7/G32OiqxJ/pg8P3V3/wpKI1vMrNvEUuRnO55n4HWir63jb7MiM2twcNOhMVZZltGCU0BGk83DhCE2fY99p+HwbTH3wZCcSF4IybyMkIyvdoSpJPvV6xh/8NfeOq5GTmmddactaYPHLuKW6PgV+ozBBbWiYXXzoc5dlRvc72GBYha7Uf5VHeiDP+6x3aKJO1R1gPzlKw4YZQNi9WsCmHiqCe2iTvLN7ym4AQG4BQd886HpUen11Y7XzfYeJ7jVKJthvNsQnHB83SB47y6WXssHepV6eQXhLnOljM7gU+QyfRpPraGl67OXW/M1AucuishZSu74c3jznWh0wvRDZ9kZxOhbWiTbfEp2ndApcwMrnwrgQvma2RvCBhbgNq+S2xvE+TgqblxeEeGKnCXYcn+LdVKqdvjlCFs2bZXL2CCKJEZfBQzm/DV6rR8UykhbEp2F7+4k/kbwgWZwJEHf+o1RRnR2nmVM10VJ8JnRnm+Owvptx/djDM+tTffMDVvPtQ4x69cv1AnkHOiqZbfvFKn5gjiZrV93x5OGMJr3YOjlyQ0KamlXLdaGQt9fj8TY/1neeW2eE1Ybs/Y5lL33c0MeogXquM/Zi3yRnjUXXPjxg1vNnPwCbvW/3na6TlDzTRyeIom2ZBE+bYPUNruU3MMZfywQov9W2dHH0v7BzF4TyVKU2F8nJXL4JdumZETysvEN8Tt8y8halLbsGYZcG907qq8HeC3ZSlZmermpqAV4h9ajxWGlYPe0tEPzsv7dW974l8ms/izxBFpUk8NQVqRsjta9Ki9Slf/5r+enLCrxK3jBHAyXhPmYnrN6/aRMJP55d7VMI9PFLsRSVJOugVZYgJKeTg5BwiXI6BeABGGz2+8GZPYmulZT6JSMLoeJldV7EUGkW82gBP/QZbsmpxYXfVbNKifW3TavV6d4sWyya7xfqm25nW9tHT+tZ2zjGYQGWlFB0mqYLDn59mH322eXn817YXA+wtB1pX9X9dpUNbLi5l+5MzFsZHs9rdvc2KhcfFfHeXpQwat43EWd/xtWxt13pflhAvLHqYus7S0av2lxbzMVrKP6QQJG7Pmnk6Z/3aW/X5V39VOabcYIOz4PmJUQtVmhDzde5uXQ7iNm35cF3iLlGankhIdyPI4RtbhjI4jkV7uTU8vFWOjiHohGeSeYIqK+xjiEeIA7GEewfChdRSuawOVZ2zG5M4rSEsTVAxJBmusrfcntzqTeX6WhbU8hWgOTlMShb8dMCnKjpW+Y/LqOrsml2vZV1scdnjUXDU/hEV2k/ezOhBXqP9ufp8OEa9uOmsCIOFif1yIBE5W3Ob9WMmx+9WUqE4lc1Dcg6x6vLZ/r3vE5Lm1w83PstMhpz7UKXFuYmyi2sBjSnagEXbDhPEGbzGT6VCHVEey/xziaEjr/pEbDu0LFZbI8exkqC7oNjpdnTa/jrzalfit86zV2Vdysc7T1krTx2ag3iSfcmcUkrFjbOtOhpfVA2SfPV9hnjfhWxl1K7kxWw367LzV5ygX+hfsVg0y5j6rHQBdMpGxqSWP5h2Wg+u+wo+kmxM9qYwHwTnNxDGUVEDo0buITM0LnR/fz1xLTaZTZz/FDaZcsN1ZwgTF7XNmfi+K1GO4bY9SYNW+pUSw4JlXpMjQxW+hN0dzd72/R+lG4WgmibTa1J8q1PNIo2PiO6817E9IaBGEHmfNsfQt+1IHNSWug8tKXsXoVN96t3dKtRtF6iJlpb1w0fJWlVYurNcFl/b+Fjm0s0G5POX6P32Iy55bi5HtfwK+lqvY/FPDptAw1ImBhzLOpXT85N96g9nrI0LC0vcC8vk/IWjPeQzFVeUmxVk/VTDjCWkP3bBB9WxaVQeR1lPAdcX6QpOpcrklxlXi17FOohoi5aT/Se0i8FrRI0Q2eYCT+VX03Or42o+wvzfZ23fryO1RyPkePep6EL5y2kU6b///Tr9icngz5sjJTOOffXiCS8w7iZedQG67htSOsw2lA8FGWv0zJdvSgt2t3T/XdRdGWwaItspDtfdAnRiF4PyiBzNjCSdnlo6ihbmVr/gXjKpkbr0YLhD0n7xsFLVkAJI0sLel8crZLPExhtPZLt6lCxFaOAS6T9bTS5ZtDhr4b+LONcts5roZYUEfDqqQ2+OqJZBuk9F9HnNsdR+CT3+VHiuOHyiAs+q+P0HPe1vLR9jFTWbkUzJVQl5Ax39l0+FjK5oy0nOXkro+AXF4+oEVR9IPNjS1JuTxA4YhrmFhiCdZxHlQShrFlT40lgFXfUUcvoOwjDvSG0hUpfqdXklOULDgFehgLfk0rcTiOPXtMsq1XX76EZ9mOEGqHvCb49Zg4HDPVwocjGKgmqpqF0Ajog7LRr/3mNy3P7UxzAVBuBlbV4PJnZgZWBYzwV+jv96VZO5HLethBbx+iCz2vSkXOKaAq4Bh08bIz7aZvP3sX28MQfGsL3eqqNDHrVaW+bXxzwRdUkMn+SI84pKOxCUI9VsZJEWb9Y/B35SInc9+YwpSCKXH0EuxxjMP3Qq+K5GttB2uvLWc0RPy3Z/ImrcwkKZqKv5x6teaQaapqFDM5oYjD1mUtBOqWTq9ST6JP3uJ5NQ/asIFsKqz5MXmQO2RKMdW/JWLtIrX3NlZATsTz95KsdsC77N+SlHAOs0MXROrSq18TWdOqd0Yk9aiDTedGcKajGXkcuVYWRvZpKdy53PrXogbW1M6ZypGkI8n+a2zkvP8wfzVwqtKX5MARRZKZbrsDjTTI3m/0WDeX4vbctRSK38FcJxNcTgRqU69vGz0y+Gg8B4IrUfyW7B2v0WZR3Ckd8ZKil0Vnqjp9hJWw2El8ljJ3F2luelfD8CFenWOziU2lDTyj4ovIZCivhx07dn3J0TWUkNv3hGf5rmOp7hLgkpTtKVVM4JC3UyKQIWz50bApfkdShB7sThYdRhdkaW3VVE+2iGx6RxUiKcP58Gmag1yfH4DIjKthXmI/dkRKHe7QOlpUrBxYzYaGo2IZqEjV9rUR3He7aFSO93ZPglPfN2MGy/zxiH0HJIAtLxVK/WKJUSVU34Iz6/8hcVIZSKJyR3Z533PmqfMeu+xPMib/b+Maqiw9RARMqribYdDXDZYL6nmjBtMc6DKw7RTqMP6IzKxuD3M/Jc2skZbOzJxhm+V73UH+RgxxIG4GwGydWXuwdTE62RqJFPHBOdsRPhafEP+X+7un4p38lIQ8uozFQjLwg5hJXcTereaqwp3GI7DH0qitiLgDs3MB+Frhd/KMvxxd/J0q730sDfIdNYJ7QiVMQ+KdNp9ooMSRIOLrU1ETAOjEey3rIXoK27EpbRpbhTuMysUuc8JDF4dC76dyGUCcr1GhLLgWzydGGJU9gkkt2tyqU9ed916N7RjAZdeNbdjo7bnKqbY77ZPefIrT+vLs9m9hbkKJRgWBfLVJMhuirMTmQ6LdhLLCJSc2H13CT6sJFZQdeMW1iXdmy6GFXLuD82ohQ7IBPAKJemTBQ+GcSiyKzI1f2agP3OpgLF4S6KtMuUE/J7+4MOExWpkkDcnmYlNjdpMhp2iNaxK/XX7+xo/dLJ2VOHrbjUfwkzHXUIsZfl9ZlBo5QD4NXevp2nvbKfXrWUgO+vZP+pThmgFijr0hdsr2EJgb9kyX84ErRoKKOYFIu6KZJc4ddC5icD4gf5dckvzar+e89oN6GIzhE3a7z2upg9BF98ghJAsUlkLD4+m3c/eCsqC1kDv+cZT8YumCOAk0jYO/JMU68HNvrEvNopy0zNN0r/JrMYbCUT4U8n47xXwNkY1aZoLUnqchbVP0Hy6Y4sUliOQ82mHWUUnuVM0VZ9KP0ypZDfYj8RUQuSBcFif7nVSuuja85nJoMAYikLGE2fcbWdE1BawWD92D8oQ4B66ZJmouVSbRVmCooy47oP+duNYe4TgUWOROBoZY5QrbxnNj7nolIBJQEcoiOC5W+xmtQsiWpJ9nvrgXyQq3kmdDnmKPRaabu6ySmb3cL9afZ8LH7jNVTGHeAHjtTHpy2qaJf3rL5YSjtlpaWEeE+Z5fgfcP6zaMAy6K7Q14yqZkj8LITryaG2x2QubjJEqMKMmDwIa5i2KaaQuZE3jCZWlWNsUS1obVDHIkv49onpLSljS6clfemmLi4Oj7+APXzNmSJRBW0CtlrToDWiaSKNIW/6l25wabutL0WwYsyuwFBGxVmnFDF0xLf/nqDMIAn1Mro6CaDMmHBiblBgtWD/CrkRr6RWsGfTgnXLd5pVwKM84FKmjSyKqmreE9eMocCWL2RI/482K2TAy+qHkmpyxZCmQQDDEmZ8E/c0kT9CJ3jqlVpO9bQin/AroUJgeGYXLOFP3t6eLcBOYfCvbeYeCtM825BK8nEq4v2zzJ+ufUC5J4UCs6iANivhmoIfVj6asPzom5gi3eD6/6zedjWiN3gEGbBU/mfzmXDzkdpZoOh317MLoToxQ0Ohwdt+SnZy6VFcF9HqYh6N/2ClgZMAeuvUkL9iNK/jec6qo0mC8sbHguSnzKVOf+mA8LArbFBYnRWCDUPas1tKZfEtpgWzLOacy7UCCBsxwJEFd4EqewpV585ZPIWrfOd/KfPRRqbPCVUexhMsgi/A8pH66HglKcBkDiP+ZEqZFrLdPDuXQAqUAzfjbXeSLNsppirto6Jjsram/eyCPHlcTbIm2aIG+SIiigSP/U4ixFQUJaUc4erRgUhwFv0MEIoRTaUTVIfuRoiXxg7ayx6gOsi6f4VNbVVMxMcfw/0lfZwuV+YM/9yXpcfauUB8GDdMpSqBlSGVETNQ+ZSSApcvmUQedT0/xVaQoYiM1v6T/ahHZkus/QTuJkYyplvXkjyXCAaoWyoPk+qBvc1NrT80riJSNaxk52enx9e9E0+c7BgvDBB/8A9y6oy8ni6CnZ9bhKnTunxEmsvvmSndiOQUi8O0dh1a1GpQtOfeKVILJdNhJWIivskQyB/gRdjhCbm/yYT+1Uu0zyI0ef5ARR+ySnw6/pjA/o/FnDH9scufWDSEieoLeg1EgP0cWDRtodmB+zqJMMgQcIp3AihlX99v4l+2KZIL8lcC1oep0jC//y7CYNORSBH086CoB6VYixRLIEilz1nebQJLI0Y9fIsUzdXrgzM6nkD9/FwwgZ36HQrA0OEvc65/RNwavwBPX1gX4MIuR9RGu2idXtrQtds8bDXYOjDfEmDcNPimnJ0sCA8AAhU3l3LX77xzRv13cCQIF+LRL9kuUyVWxpszTpb4Tqw2xfLxdURIacwrts95rahguSVeitTnVxp00poluKaFhZZVubUWMOYQFK6koDkLFBdcrQGAZV8QSdQb0cq/22S4LQDR/wpt3L35MgrYJgpeRQi3axN8ZbGhTPi7SyfWggZ8Yz5gzDo1l0klNLmlZtiBMjWsGIZzrVvglmcYUnxUQGqrJYKaQ/fhr1O83MCFTFcU72Ye5nmXzLQM7XhYWBo1vifRa3Rl+1DMuFiVtw02DvybWSWZKp6XRFS6EzgJ59udffLr0oz5b9GJqmRb6oomgbtoBlwt1SFk0ZhMQcISaxGbGdX+QTuUHO1ABKEq1stMIwsP8aBLQo96W6AVU5EwNxybx2j5+e+0Z6C5DV+2ptUW8aNMwY91AP8Q/t92BrdUhi+jb76d2lgX4HEDLZA1gHIByuwwhwbgRSdU6lK7JFP2ejKDliYqVlI0nUl3GEPTu9g8JrphZFLeh5wRD4xCHkWANYILzhvurEzHYpgV7LVhyQzcrxxHBd9FqBWm5+ettYDE9Jn26LIvBM/YIlRElYTO+bh5yuUIsyzW29/m1hCX8pdrFaEY4jx/70ZP00Gl3btVKNtYCNpzJp+2+8uuCQDuUV1dvKEicR8pRTAYyPTAyfhkZz8r20r3y/xjk0cxj7eiCHYQcgha+ZmP6zII2CcynWRurCd2V7zH0aQryDTESmE2WIn5imoFNnScup2L0Mv3kdAByi2oXv+I+WIfGPMK8pG/Leh3t77YXnkoX8Q4d4QEZ8iUttiaMt/AZGO1a2QNhduncSaKulf/xOXi4iIuz994d4XE0nxiTBxE1b690JKLm+Mqfj+j+B+44Z5BsVizGOeVG0/hSCwHR3Y/v06+yaOzsFtzQUB9s3wBpdVEo7Wqu3kF5vCeYJijzOwErt3t+0l4IZUJYm2/M/KU4VcNMoy2Z7hS4S/QrZa4gDofEszDokQlZJIXHWaRKqL8N4CRQTLcKa22Yw/Ci+EpnOBI8dev4tXoWOXn0s0ENtMs+YXAEIYrG0XnoMG9gFeT+/y3S34LAv9b/akkry5XDTEP/j9QSwcInJpCujMqAAA1KgAAUEsDBBQACAAIAJOUWDwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s5Vjbbtw2EH1uvoJQgaBuY5nUbSVknaBOkTZA0hZYNw9FUIOSRivGErUVKVvrn8mP9C0/1iEl7cULt26aoC26fpA0HM7tzAyHnj/t64pcQatEI08d5lKHgMyaXMjlqdPp4jh2nj55MF9Cs4S05aRo2prrU8d3PcfQO/HkwWdzVTbXhFeW5bWA61On4JUCh6hVCzxXJYDeo/OuF5Xg7fqH9C1kWm0XBiEv5KpDLbrtkJbV+Uuhps8To7BopCZEiRtAoz1Dm59YW+bQZZXIBZdGn7UNmQi5FrkuDW8UOKQEsSxRXhTRQVzWNG2+WCsNNel/hrYxnL7LAhrFLAq9OPBY7JD1sOQlvuvv/tDPjFdoik/dWRyyGQ2Y7zEaBqhsPa1FbrT3CwbdcLUArTHeivAetpFYtiLf+3ihzppqS1o1QupnfKW71oLlj6SFXht1CGRrvPxaLisYaR7GsoTsMm36xRA6fxB9vl7ZLdagdPmsqZqWtLghDJFhfKbD0/IYSzdc1PJQyzHKMEI36yzxLId9psPTclVCDqaNnrPJa0YnNUIRQ0DhJsc2zlc8herUcUgnhX45fWiRXY6usmHD912dYnLvps5GJvtYMucnt5JufgmthGrILInYdk2nyBWvJl3WkBwyUePnsDCGhBu4fkIDBmoOyxYmw4fSGAJmV/ey9xZ5fjIZYWxQaGumscbRH218MSWoywbReaGMqxV5jRVeOSTn2iybSqqgBiwzbZMDTV1ug3Qmqpw5thIFqpW8RpY8jb18liZhAFGeF4yFWRwXPs0SyCLPT99o2bOQXhSdUimvqguVlfh6ETCSojxoL7HKwV2KYvBLyDOeXS7bppP5QfSU5q3+0SQ8kRYQmyT9qXOMrYnOaBxGQTBLIn+WYA0imbrxzJ95YZBQlkQU69ohN0PLu5WMukTMJShlK0bv1oZtdI3tWVN3GiOyYxqu31Eb2N5WJd9VytfQ7oFpxb1q8n2IucT4W/wwQiskuyYZVwD52LQnK8kKRdp+sDEI03NA8gBTDBy0Itv4wC2iqLcbtW/svNvvbWHd5bZtHqPjxu77OT7yKawrZKwFnk7HnvG05giyfeOpaqpOwyLDGpEvm8xGaLJv7Pg+pe6QGJ4Xmre1odn9hehh20+xGMQNVivfc+peWXGIDv0U8KS34aH/LnjCDTzhB8ETTPD48X8Rnux+8OyfNn+OD/0H0WFbdIa3tZkZ2CdG5wPB6XHWVGaOnWL7vOqWKS8ljrT9avv5RX9ETgknX5L+ly+wERyRr0hqvvCJaJ4cAF100p6dzoHgj3Bu/NUCve/Bwe4NwR8H8Rx6zcYIPvy1a/TjV7w3UJWaeLQmV2hwjmPzedO65BuOo5XSJBdAvkWpS5A4a2tSvP/NcEny8HNGHy8ELuBEAkUBZlOTlcTkKYq4xkOdPK8aKwUPddz8yG48w3kBc/amO7YiCpyTQLqDvOdCotc16vlOVAVYWYusFGAE4DjVkrdwDQInLcBokAk95FOjgO79OzOQqEdENTgBqZHOj6wtG/3SWArttcDBRbuWJT0iNh4omZwDr8lNVxPjIF4J0IL375DPRs05zCuNoXX24/wRZ4z7pwrduVMpbGnF9vpmbwlm+J4m4Nuzl+kNvktDSpMwDpKAxZEf+7ZRzNwwDGlMPeYn1J8F/u68dXdbPRw0vYNBc1ZEHk2ThGc8Zl6C1zMvziDis5jmaZS92UyYekipi6JCSPTenEn8vztpstj1WZj4SRCHszAJEn+aNIOY7fx53v9x1DzZvXbY+/n4P4QnvwNQSwcIg1zP/D8FAAB1EAAAUEsBAhQAFAAIAAgAk5RYPGE9xF8aGwAAkx0AAEoAAAAAAAAAAAAAAAAAAAAAAGRiODJkN2I5NTRlNmRkZjExNWM4OGYzMGM5ZWM2MjNiXHRueDE1MF9mdXNzYmFsbF9zY2h1c3NfNDEgYmlsZGVya2lzdGUuZ2lmUEsBAhQAFAAIAAgAk5RYPJyaQrozKgAANSoAAEsAAAAAAAAAAAAAAAAAkhsAAGQ3ZjYyMGI5OWFjYTgxMjk4NDIyOGNlNmE3ODBkYjZjXGZ1c3NiYWxsX3RvcndhcnRfZmxpZWd0MSBiaWxkZXJraXN0ZSAzLmdpZlBLAQIUABQACAAIAJOUWDyDXM/8PwUAAHUQAAAMAAAAAAAAAAAAAAAAAD5GAABnZW9nZWJyYS54bWxQSwUGAAAAAAMAAwArAQAAt0sAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" /> | |
|- | |- | ||
| <small>Quelle Bilder: www.Bilderkiste.de</small> | | <small>Quelle Bilder: www.Bilderkiste.de</small> | ||
Zeile 16: | Zeile 19: | ||
<br\> | <br\> | ||
− | + | [[Bild:Laufzettel.png|50px]] Notiere deine Balllaufbahn für a) und b) auf deinem Laufzettel! <br\> | |
Du hast das Rätsel nicht nur mit dem bekannten Parameter a gelöst, sondern zusätzlich mit dem uns neuen Parameter '''b''' gearbeitet. Unsere Funktionsgleichung für quadratische Funktionen wird damit zur '''Normalform''' vervollständigt: | Du hast das Rätsel nicht nur mit dem bekannten Parameter a gelöst, sondern zusätzlich mit dem uns neuen Parameter '''b''' gearbeitet. Unsere Funktionsgleichung für quadratische Funktionen wird damit zur '''Normalform''' vervollständigt: | ||
Zeile 50: | Zeile 53: | ||
{Für b=0} | {Für b=0} | ||
+ ist der Scheitel auf [0|0]. | + ist der Scheitel auf [0|0]. | ||
− | + | + | + heißt die Funktionsgleichung y=x²+0. |
- gibt es keinen Scheitel. | - gibt es keinen Scheitel. | ||
Zeile 66: | Zeile 69: | ||
|} | |} | ||
− | <div algin="left">[[ | + | <br\> |
+ | [[Bild:Laufzettel.png|50px]] Bewerte die Aufgaben auf deinem Laufzettel, bevor du weitermachst! | ||
+ | <br\> | ||
+ | |||
+ | |||
+ | |||
+ | <big><div algin="left">[[../Quadratische Funktionen und die Scheitelform|<math>\Rightarrow</math>nächstes Kapitel]]</div></big> | ||
<br\> | <br\> | ||
<div align="left">[[Variationen/Quadratische Funktionen2|<math>\Leftarrow</math> Zurück zur Übersicht]]</div> | <div align="left">[[Variationen/Quadratische Funktionen2|<math>\Leftarrow</math> Zurück zur Übersicht]]</div> |
Aktuelle Version vom 24. Februar 2010, 18:40 Uhr
1. Fußball-WM 2006 - Wasserverbrauch | 2. Quadratische Funktionen und Klippenspringen | 3. Übungen | 4. Quadratische Funktionen und Volleyball | 5. Quadratische Funktionen und Fußball | 6. Quadratische Funktionen und Basketball | 7. Endspurt
Quadratische Funktionen und Fußball
Augabe 12
Löse das Fußball-Rätsel!
|
Quelle Bilder: www.Bilderkiste.de |
Notiere deine Balllaufbahn für a) und b) auf deinem Laufzettel!
Du hast das Rätsel nicht nur mit dem bekannten Parameter a gelöst, sondern zusätzlich mit dem uns neuen Parameter b gearbeitet. Unsere Funktionsgleichung für quadratische Funktionen wird damit zur Normalform vervollständigt:
|
. |
Die Auswirkung von b auf die Funktionsgleichung und den Graphen der Funktion kannst du in dieser Aufgabe noch einmal testen.
Aufgabe 13
Variiere b mit Hilfe des Schiebereglers und beobachte die Auswirkungen auf den Graphen und die Funktionsgeleichung. Was bleibt gleich und was ändert sich?
Kreuze jeweils die richtige Anwort an.
|
Bewerte die Aufgaben auf deinem Laufzettel, bevor du weitermachst!