Quadratische Funktionen und die Scheitelform: Unterschied zwischen den Versionen
(→Aufgabe 16: Leerzeichen) |
|||
(9 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) | |||
Zeile 8: | Zeile 8: | ||
==Quadratische Funktionen und Basketball== | ==Quadratische Funktionen und Basketball== | ||
− | Neben der | + | Neben der '''Normalform''' gibt es auch die '''<big>Scheitelpunktform</big>'''. <br\> |
Mit dieser kannst du in der nächsten Aufgabe experimentieren. | Mit dieser kannst du in der nächsten Aufgabe experimentieren. | ||
Zeile 14: | Zeile 14: | ||
===Aufgabe 14=== | ===Aufgabe 14=== | ||
− | + | <ggb_applet width="900" height="500" version="3.2" ggbBase64="UEsDBBQACAAIAAmXWDwAAAAAAAAAAAAAAAApAAAAMzk0MGY3ZGM0MzA2Y2ExNjc1OTQ1NzdlNzlkOTIzYmJcS29yYi5qcGedl3c43N2zwL/qaoloUYIVRE9Ejb66EG2VXWyU6OHViRKsEBGCfYmeRC9hg+glEr0vomV1onfRrbL78/6eW/65f9x75zzz18xzznzmzHPODGGCsADc0tHU1gSIiAGA6HoBhGlADaAgJweRk1GAQCBKSgoqGsYbNNTUNKz0DLSMHGxgTg42dnYu3gf8XNwiPOzsAo8ERR6KSUpKgvllFWXEFR5ISIr/swkRJSUlDTUNy40bLOJ32e+K/5+F0ALQUQDZQDYJETdATEdEQkdE6ADA13GSEf1bgP8QImISUjJyEAUlFfW1Q80tgJiIhISYlISMjJT02hpybQdI6cjo74qpkDNAn4G4vRjFXyXkUPCoVrQyGQ3/4ZWw9Q6npLrNzMLKdo+PX0BQSFJK+pGMrJyauoam1mNtHWMTUxjczNzCzt7B0cn5uYuPr98L/4DAoIjXkW+i3kbHJL5PSk5JTUvPyM3LLygs+lxcUllVXVNbV9/Q2Nbe0dnV3dPbNzI6Nv4LOzE59XtxaXlldW19Y3P/4PDo+OT0DHf+DxcRQEL0n/I/ctFdcxGTkpKQgv7hIiL2/8eBjpTsrhg5vQoU9MyLgVv8FQWjakJORSslj4TRHyZb72Gq27ySv+/t/4P2b7L/HVj4/4vsv8D+m2sKoCEhur48EjoAAizEqxSROnKR2RrYCBf+MTT+8jiWiJyv63emCujSdbTDK7I7BShP7FzClz9AWK+GJkdjQmJxsh6HClIiu/Yy8XMwyHaO1MORGnrl23DSzLRI1FG5y8EoPrBUnvKqFQenHmz+dvZxSCr1MZ4/9kEkWqxltAzCkoYUM0LdcCUlFrl3qcy0jQjZQLKlfuzf7hhYHX/J0z3azjbNTs2KZKfdMiAArw0sebg7m5mhl1PfM+d1UzTmVDs5JRoGyYVmpGG4JczH89wdawwBiPMd7YZlGCTzXnysGrKv1pZo746oWUIdsTv9Ul8iAJzFoPDjSk+34RBMxKXrNNsd54CH011az++JIIU8puz0/VXA4FZKjw19s8n7U5rW035zw1rvCEDbjTLkkEDz3kIRithVZlkZsoC8cjmBeqezjLVdcbHgTbl7SbIyTvgJQNnfdseLBXYfJrMDf931YDqV6IK3yDUMWsyGliGzi2ijzsuIJKZpbQcIQAe2MiR8zmGGXpoAuAgGXqLApbCMVqba/AuzI3M46RWtmk5AX6+VtPNtPyN9bF3PwbMFDvhZUR1Y8/oYhyJk2/cxArC2CB5obvsubmbFJ7QQLs9mY3y1uZTiai4vz7/uXiVUCdcL6f6AikqtZ/32DqKGZxI481PS9DCkde7F16y/hI+k2hx9mXNDNC/QciAaVqbWXltrjQ5sWUZLVxZDOeVOB5EF3mslWHTArH+A48p3Vlq8Aui4XMg6jerUkyUamzfwyP8lZ5ellZ9gHb+/T84fxPY+L3VW0xe5C4Yr4XGUxYEoJUcmT5XSl/ZDI2FsSlPsikVuqFZ6urCpQY8ctDHCSOtOXyuPkXY5m5j3cw3LqoGkJNOJiaXnHFDGKrEW4mrbV/efckEVJ9fzdouwl3gTxHT1s9xaT2u8xcCkVm7WIZ5uwI+pMm27GxPw3ID3SnikQIfRbgC6NX+kgBtLhvdzvGNoVPaf014bGH9mHKbUfIX8VfzU5REzjYptwhFVEwAphTk62k6KdCdq90pGrV2MDyGYBWe1NM4+GLd3yX23XmY0GoEzvHcyegvVYLpHxYImzg+Xj4AtNPtxPm0fePvHtIFnhq0oS0c4yM8J5Isp0JGAOY/Yw6OCAzMnQpYhoZAiHAFgKxBBAIl8hzwejQu+Sq9fSCYM8NKD4t7y1KNPRkpbHCNNnXjW3l5NgkLl2bbeRYawVcneYx0ed4ntExrorCyzj+VoaBe86JuLunSp8RorEvKukhccM4Zrir6DI9/sMQ+ThKqDN6wgVv2LGrO/t3764AtQnO1SS2p7bOdPC/Ar51kqSc1e5RLG7eVVHdJavwwhEqgtK4wcPGa9NM69s2HRVwHZJDxlnF3216Zc58fJkqvFULUETnMmqLajDOBf+ra06bX0fr05i3uG9W55tlIzvrHUudleI6lsY2WRqVv55cjc08BbVwl3xMUwA7NpJ2UWt+Ko3PPr6maCx811viTZfe3/1iG4rCzd0kQvV3GsNK41hyoF6yygTcf9kX+6HeS8iu5w5cYIp00I5MaQM0I1gH/r+orzMlzzbtIynV5uibiXv3p1RpUUm4of7TQ3CQZaa3YerpS1dlTC0BEmUpH4s1n32HiG7f4u5xSU1ylzqYpWzVipZ8YezP0s69TgrPi6MtylckKyrPkCT3wLCmdpFAOcNH48XZLeIwDZGfuhx7tsYzQZDtu64jA+8J6nFw4bVXfed3yQNP6IudFp3H5E/8GcxjvmSX+S/YO+0qEqqtMQpVn3FVOPRvJFReUdK9JY04ib2cvwn0Gs1N6lg6T8uJgvXUJGMS6b22tDd2KNERPp/A7PRZ8S7yRFvqTxg6iYf8FgLKPvxWsrDjgPNvwsHbqSfHZedwZ7Dn4wtS8WV5gXIpKF+fOw1wX7MjjyOjkD8u01ltJevF5NVbnMhqrJ/BEm0SyLNe5j4s93qm+1qpH0dPfjpdZ/C3Z5vXfZscDKoPugz/ldZ9AnrlyBjfwb1Ea42zylo3XDYjC+carH+91uFFSdKsJYEBPzSU23/dsQBgJQbtE/0Vq947fsAHa7FxK6Hy7MCQkUVOoTEHSGvFnHUwmpoS0T2j+fC3weLApGrpQpxTT/Nm9Muj2fYDVYRQCiyKXfUt4+fHQx8OqcSnQxRupVbuznBP9bZlkG+0VaL30UfERizSjSwpTZl41rwGcnlWt4M9SysPlnOaNE7fXSws9pskLFkMHVEEaolcoGsAO34UZQLnoapEYzfb/pqWG0B3d7IzndfaIM2SvZabMcKEsZW+4IFsTlZtY/spCLL5yh7SZvYrnaPC2FqqkzHj0MQwr9MT7dmu/nmLmC7i0jSazC5OE/lZg9xMetL4aFQ23gQ58iX66Fz4cmkzil1KoRgPiYeZYfzKs9Q6m7o5JOBCAhlPZ8HfkB5uCCEctGXPQYbLry/fAH75ertbQFi45ZCOQ2LdWDjBEMny9uZs6+aESt4JlQCAbwWYpZXf67q+sXWpdhfpgzVNhv09GqbLoXdKGODx5TjEOMpboXPWoAHTEZhiw9TYu86N70M/IPD1Ud1mDCuDyt1J22hOSbXQ4RAIuUiyu9tL3l8oOiSdoj6l/HGuDB9GJPG9DnSGRp0MfavNANTrc961Wj6xLpV3yI/kPjfMp/MZiHMyUaR+tM+hQKIYfM2/AsrHjT2Qj4hzo7FP0O0yZ0XNzBV8HNEKIs3JL1RmrPv8j3sM4WAdbFhtcL8whuUjLtOujvvthFZfdKvrN6rL/4Hduy1/ykEvS9HpxCFmB4UbM9T1tIolnBG0Zhf+l/CwK1ZFnrZ7zcOUUpxm1YcqgXydEIb9wFo2FQHnZYhYq7U2WDbcU393hVGdDlNVQxX7qCkLWzgyKr/gKyNCCtxOi9Ht/2F6zxyrpJrPuHLV+TaQ1hYUGhPhWONJsReKpA/frgsfxbmdL0m74yLEjqiPMEs6stS+7Aaq6EstWbAeA9hivXZiJ+VsnkaS3O+6XgdDgMV0Pe7QlJNlJ0NS96YbNXlPq3AA0mf41kA1ow3hqsYR92c5qy87mC3McPbujaHTfVT04sBW6pPhJZe8bhFetxONjIj8/tV+pQlCfouOj12CD1E2JU0XXsBTaLx/CLV4sWc/OBqsPm990PHrNY5c2M+qlEL3J06EA+WaRbPY55Uqxp+uMgEvxzpNfDwbfLukaMLhvkvE4euGHpk7/yJFE+v85lu02KPkv+kiZIFr3DmZm3kmF3BCDFDN7cl1OL1WX8SpQe1s8ZBs/4OvDN8ul2QFLylKPLYUvpy79UK6JlHnaNPDyya0OVSRjeG4ilJ39izpq039BNXlgX4B6BbjHUmZwZocfAs/TDG/8c/abOH/XYlUUPGs1KxgZGi1Uo6gU4tAj7cCncwtCuWW15GkZNPGza4ZxcbJI+fLfRurX66FBq3SFIx/XneXD6bHMCsGFVvhCRRT0dFkjTjjq9bh2Wr+KCUl9Z+0cxOu32tePAWxarqSfMh1pWf5VrB32qDkpq+esTzP7o2dCacd7EQF//vWLFiFvNawdfwu7UyByeojveSOdWJmdYnipZBDh/rz6Stpq7ei/WewMTEiFAuP6VjVIk4Z0D1RUMl4+9ITxXN0zitZ+FDPeYnBd3WurB/Ijsp7nW1USt+0rheYoc2MVYS9ZutxBJ+/vEzdKH3fxVwUXHC3jfyLIdz4I5rpvKvVTIHHSWy+gu5JfyMMPlk9FLPGOFGitL9Q8j2scr7OAWAhAppf9otXD8MjO/MVFnxDpIKE4TJ6eLvEV7iPZ0Yfa/1ZerV8U1ky+AC9uUM35wv8iQptZlGckoogwJK1SThJ0KdE2ZTcv0i3GRtPLSWYya2kmhq4bnfWTr+x5pW/dYaqzYMbVp8/WacOTEM329CbEoJv2SuLecDONROCId38i7q9cA5rkd5zOZtGKwmE+FdgKnC+ew49wu3xaX5Zfwz5YnmGT4Tm1ryIkYOWj19LFCZhWbb2ZFWo4mcdR24xE8ErSfW66IIHGSWielSorNofxTIeMocHEuK2lQI92nkjmLK2Aa2vdb6kEc3mY6KTAInQRlXaYAYToEOI89w+oSpju8K8TDkU3e1ODDjSdUFOVOafHcIu2Kg4+huhUkg4mLqi/U81M4vK/f2FL15/XaD0q31p1XMOXDop1/k8EcEw5uiZ1XHIHXYjJYP3VgaQ9eo2yJhp94Auc0Y+LyenxM0sU4KPNXfOEXSzoPD45sHk/55e7idQiRYdb95Vrrd+ypUu9n8RTZ851H5fRjrZawfQOofAQu42RpHN0p5ddVFyS36A8+2y83FvD3wYG1k4L1ArnTN4VH8Jy1vtrd+Ws4qkOdI4OovU9yGzI4xxs4FL7mxarQEbhnZ4BpA2LyohqqEex12KrBaEh0rdrcT4cYbiQ+zn5B44WDRa7m+NG0kri1CfKTyPJk9Buah3FodyLG3iGd++Rv5BEADqZ142LjhOq5DXdv/Y+W6hkI8WGtTJnZiUVfQExBuFxVkWg1cVY3KCNROjqP3yPPbhX8ijwFUVf10p66QV24wQCJ//70kKcpY+olMi3vVns9qc1yqOlG18PPiT+KC7EwLyXnLTc2x9AErie/ohsfy4H3RHnOx+HeqZi1uMoUSITJT7QGmqyVzF5RU2bt3Nhexfd2QJL7C6pNSCRK7UgqoqmUs/ibKA8if3p95MG88nAETfCHaAkCQETSvOgDtYqsqXwzpVTJgXn5leN6AIII1YgHpla03XnQx1RxKSQLid6AWvYk6GLjcz7stkUVgpBFQXMFkrlzs6K4dFX9DQ8stuIxkcurNBIJmpKEU1DxaUnkOzFbbd7l93PJs/l/V4mJdPNmHv1aKgg4dhE011KvtUYryhnWVs7GlbNiAcvQMyLUfPOh1A5HZwD2bVL5Ww8VApCJccX2ZlZaadUkQ+aa1YTPhH+c+U4ijtci7oQGEgCqBXTdWdBZ5rEMLhlxwH/pOtKF/r0cZB7zHXSgeDNGoPydkvN1swj8oykT7g3RyKZNiEXi2e73VPbLCXyylaxCcXJYL80dznrZYiM1qQXbh5aHKN2M7SLepd7x6kG5BJfgWRHz8bfME+AZ6OXQcckvLD1ChzfuqxZ0MiqnWEp6Hnn3iCtU2fTps+K+/GS4wDfJIw4ZQSPtEzlSqAR1Xl2/cz+5QiXn0ox3aLKBQfwT82WuwIS09ITU5L/oUF1f0DW1KMb+VrN4StaVNNvcsLpEGiE4JoG6g3aGdXnpqwK86h6rTF1+aQitlPR7S1Hbrqya3EcjXwkAjLFip/ojAbhrhoWLenmPcDJ6ote/R1r+mHay46h2x/DadmQqWf/ZwMHMcIFl7G5ODgaV3w7/2mo3hvvs5VJddyQ+w2yzrj0KJt+C1YIksrIgGRFWbXLYhLMmu47TT7JCyP1Wa5XE5jmp63Qirg6tNJn8CACtNRumP/PrexwdXqpn6dQcfa5U/CAuwD1Hw9skB8bPwss5r3MqxvhJx536BcqJWd9UUOb+lGLeylEeSufQ4MzgWOnXn1A9AtBpGIwssVmkDiYAjfOXpsGnJxrWok1/lPIQFRsvUafOM8hvVg4EgBoEuy4B6ebT3uvhCPLbZnP+sAuLx0GWDC64i/7G5yAqL4Z0e48KZkKEMc2/bVzmD/vm8TgPvNDfl8rj0fz9dZzTdwhATAm+p3gZPHn8TbTpaJsAVOmgasZr12huKnq6Ymg7bthdpMyftiP3TcBgl2Wbe/WnFNchUQugb2c4c5qbro9cDBkG+svLLqTwXleGM8+vpq9nS+aKnEzn9yTPlhCtxM5R9Sp6K0yIby7brkIlyck/Die5x4gFRCip0Cyxvi2b3fE/ksYaELLNvm2ajv3y7J5BxEhjK8lgh7Ja6Tmyc/XmMRODxasXuhGh7VdjpnjVb8/C0Q4vympDoIOVQqmz5pn9n3X56u+aMZmawkCfSS59THvvBGHjIdFSUSxuqlD8lh3ORK90M/amH3UiLXS17uyXRB+/kb53ItzJUiEz3zbPL2e7E3uxmHYqpil+wI0yaoFHKx7PNG89cESe5ttdudBv6z+hD9mE6TT2/5E2f7Il2nIS6DcgdCfixwmgBV0VhKS4Ypr0AslO6rx8XLkS+UzvJLHTA6DykQpanSDigHI1yldvOPWhbt/MttsWeFSf9tbu2BEm/wVQSwcI0adxvAEUAACaFAAAUEsDBBQACAAIAAmXWDwAAAAAAAAAAAAAAAAtAAAAZTcxNWYwN2VjYWViYzk4MTQ1MjVmNmY4NzkwZjM0M2FcU3BpZWxlcjEuanBnndR5ONTrHgDw35hhjKEZZkS2EWNJk6NBZcZe1rLNIYVLtiwl29EQYw2Rk5NkKwyythGynKwRpcNYamxjG7JUGhmMda567vLP/ePe+33/eZ/n+33e9/083+/zcoe5UwDS3NjMGADxAABofwHcMeA0wM/HB+Xj5YdCoTAYv4AgWkgQDhc8JIJCoKUlMDLSElJSslhVJVk5nLyUlPLJIzi14xoaGhglLZ1TeG1VdQ38j0NAMBhMEC4oLiQkjj8sdRj/Pwe3FRDmB6iAFhgkB/AIg8DCIG4HgNl/Jy/oZwD/CBAPGMLLB+WHCcD3C2qRAA8IDOaBgHl5IZD9LGU/D0CEeUUOHzfgQ9m4QuUC0fiYuwX88oZVbaKkfhZW3S0oFiZwUEz8kISCopLyERUNzRMnT2kRTp8xMjYxNTP/1dbuvP2Fiw7uHp6Xvbx9fIN/C7lODg27EXczPiHxVlJy2r30+xmZWdk5hUWPiktKy8orXlTX1L6sq29obH/d0fmmq/vtu4HBoQ8f6cMjo9MzzNm5T/MLi0sr31fZa+sbnM2tHy4QAAb9M/6jS3jfxQOBgCHQHy4QD/lHgTCE9/BxPhEDG6hrIEoOH8OPNrxbUNUGk1cnsUTdgvoFDmI1phVWftB+yv47WOz/JfsX7N+uUUAQDNpvHlgY0AM2tpSf6XXu6dEi0CzFKu08z1ZFZVfDZdsQJSpYOyhsRwgI8RAoeuwS5bX4YjwarsoTR0sLODo/idwJpdc6vvabvo2tiRnzOIY19BnPg/a8i436M2ErJ+O1JScT1TWDEc41p+iIw47JXPYS2PFHqgbW/GEqi4Sav2vMrI54MDI8kHy7rGG9saWAMe7s9Lf3Hnnnr/caKJXSrj/ZrF2MOBK0J8vAVQLl4dfE72IvtnpCo3sexo17WlmfWTkrtYK7S3h1Ff+kVHbIZWTLJena5GuxnOhYx7Lb4swQkfskGIA0jmyK+Zy86QR/unb/CqOJQsg/nWzbFDf6kbYmpG5b/VFjQVNaN3S+JpdsonLi9IH8LC1ICMSt5vMnLhAvg/PnC23mAm05NZMLVqGsTnkp/tJf61hC0Tp3dCwoh12cI2j2KRFklm1jb6rYrS92E/OWFvfeaDFg2DRoRZrZutJAU17hb/aklIL0FKSxgUw6aKUuWtudC/Bb3SoasrjfNI470S2jiVdedg/Cl0K2ZRKHKORHS+dH32ReKXM4lTH6STPjhPSHBGMT9yWixOa3Ga+2sSbR5dp8hNH8YpiPZ63N6tiBUjDnj/AgqFNMzlTEcaZfcNvGitMi+TtOoPWt75dzpJTvAuy12SD1NirCmbMxkzioV12jo2tf15Al+Tgxdc4vW6UoYD5D0BTDEJ06pv3C0tPH6Z2jQo9I8Oe8hudnOC0zcIyoL0GmwV3DU1VjWrLtz1/AT+6Y1+2yj39OYcs1RME5AZzk7wY67IMSIRWbmZn3KjvM3k554bqgAoSc++jcAYy6719ZwX3H3n/T+K6dptVDfDnT1YBd010bj2r3CuECBiNR315yAYnZR7Hwr5SnbC7AGPvrN/e6VUlJmwfw+nw3vAXFlQsIPGjPX51q2eje3xZIf0Db6CPNP6NVv8DsSB0I/aNTmyXqFthiu7NVfhVqfJYB0GJK3+NxSqpRc0N7vuKEmdokeY4Utj7TLKKEfeg+bA32LkwGPkdKh/pGiYbSrSqNdjuuqao6SuHMDfw7WEWMeEqxM++2lk+yPF3zcmiPusnVZMR7qmfW3WGpZ3oM3fvfagAbIzTo/Y6hCCYxUk7Yi7x+dZfAdO1bzOHkNNNX1sv9i0MRTo0NARVX55IM9pQ8VaiUCzEuaGuQkWh/KNEgs1Pm2KDGhcmek/jp/EYq6b1JvR02nAbtdwGxWyojiMmLRTxnt5OUGHnmscioBeye7tpSiHF7O/1sZV1V9S0TP3+JLpEDyRVqershN6IFlAujte3XE4aeZLavE5wyi/09Gh3jXxr1su08FVIvwQOXwgNMNyuaUEzLZ6N1HV/Ngs5ddz1mLdNm7MgFZC4/J1J5mqBTuwnl5BWUVf2Ae9Lci/erMIw3Mk0+CBGcRLDPt3+0gxgas+LkeoqkFH/Bj+mVSZLjuABFjgb9OGRjBKBtLjQrDtmbsN6Ul2u1vqzNMFgyJenLzE5ZQ984K7XsfVg5/7TsiIKqv+L94IVe013+JzeOPmFtxGr2oRa2SopLHMXqBosmRqD4vGJUanbsXBV72Vhfi7C0J+1MSZxRSvTqBTUn44Npx0ejjJ+RajSSihMdKjOQ58oDJWWlh9Xk16iIPxf2e3o0mtMZidMV952tEiI8gqcEXWyVz18n20e56OzRJlTs0/raP35BpBsx+jETsjddujP07KgINZbezZKVlluDpsnTfnTXDJ9sMlpf/5TzPBbAE+j0nAO/u08z5OimgzPCY46ydmvujNRyJWz+r87EbSIncLpm6JUR7hJuzs8v6455+fhsOKqGYrtl/4oGfe8iuQM9GPOk89liZdh1iTi1XHREldXbU2xBvP7a+XXRrh0i68uewkrvAy9IeGGCR309MXpMoBIX9o0WOE5v2KNZv2o54BoCRS4JEwPzTjTuSVU+J+zm8mOQ/m2yqGJTaMs3Nyqi9Cd8piVJbMAXI6JtREy76P/optd2VW4c28bFw2X8tg5haYGdcDCdC7Qa6A00q9DYj7mAeGjJmEXyaYXlAi2GRrb7vQwv96Gpa+5sKqIiEuWgmdnO4FGEqOt7zvczsjBv48miZ62qLfQsX764zUMMTcMCl1z1wXcYKl+BsI03V24VcOyfwgzvySYhT17HPzu+rGY17SzKIsxNcR6XFHpdXbGQZNKM/+qbKWy6zVyAThflqx0Ru4uEbTNCMX2s5+q7+TX9wczN5ZF0OFHJE5KS4fa4ld2mvavjDV76Md2nnic11jjovaYEhV0oz/jwlAnEuw0IxcnUM/KIYGfNbeLi2RCm5K4FXe7doG+4diLABSZVXq88bRn9hTS6pZhTR+LpwQ2OJfGTqGXGRx+icqdEiBLF2yedb639fqP1jVnexJG6dclDmZjU7C1raH/6/kiHWX3lid+T5IPVH2OfeUiZEPda62I6lX6ZLD2xG27r3X3OyE+SWb6ZnTj9PdLtpZ537iWHUHvLAXpA2tZst+kC6XC3HkvJUDchc52cVRenyW/nODt0qLoO+KTB1JovLT0kUwP6it6/J8KCmYrqYyIO/m1p9aicFgzistqrMG1Cb9hQbM7juE8ftYJzTrR2eru2vIpRfBUmJiImT3SkqQZAr4Wn+eSQ2114fXJyJh0WqFYovt89shmiibLRHbGRDZ3koZ+f1GrmV+lyI93qQp8y27dXBF80HzCdsAUop87taQ5H9gV2tCBUpcXFKMaG8/WH5YHICzufe/d0hl1+SY3vcbBYv/jUzdRT2bzq0Lu4Qa2v9Pwba/6xDgofk1jLiNp2Wk9YwIajOLLN1I5ksPgHdZefijhbmKwM5o78HVBLBwinhIjDPAoAAMcKAABQSwMEFAAIAAgACZdYPAAAAAAAAAAAAAAAAC4AAAA4MzgyNjIzMDEzNWRhY2RjMzU4NDhjMGE3OTQ0ZjM4Y1xTcGllbGVyIDMuanBnnZV5ONRrG8d/Y4axjDN2WQdDFLKOjJhpCMmp7FKWyNJUHEuWYTA4JEu2OKnLkpF9OY5wOGIwjFARJfsakW3EGNLMq97tn/eP932/z3X/dS/X/bme535u9gf2LCBwwczCDABxAADo6ADsCcAE4ObignJxckOhUB4ebl6YCD+Mjw8mISQMF5GRRMjKSEpLyymeUpZTUENKS6ucPqGmqaWrq4tQRhvpaxue0tHV/l4ExMPDA+ODHePnP6YtLy2v/T+LTQEEuYFCAA0GKQAcgiCwIIhNBRBHfXKCfgj4h0AcYAgnF5Sbh5fvKKBBAOAAgcEcEDAnJwRy5I088gMQQU4heS0cl7C1O1QhQEQ7JuMpN9K4rkPUZmhLUccjMJaHV0z8mISk0nFllRMndVF6p/XRBibnTM3Mz1tcsLWzd3C84nT1hqeXt89N/K2gu8EhoWGE8Lhf4xPuJd5Pysx6mJ3z26Pcx0Xk4mclpWXlFX/UP29obPqzuaWzi9rdQ+t92fd2eOTd+9EPY+Nz8wuLH5eWP62s0re/7Owy9pj7B9+5QAAY9E/9Ry7BIy4OCAQMgX7nAnGEfg8QhHDKa3EJ4ayh7gHCCtox3CLGGU/rOniQOjZboh6BQ7xiirpzSvTvaD/I/juw2P+L7F9g/+YaB2Bg0NHlgQUBLLB3oFJE4j0yBdlvqqn0U7Ua44/7xD4kcm2XQjJ10kq0XNL3VpxDk3RzLJRG7MDcLsOIDRJaeYKjdbLb/m71pa+f/WiunMP2tuXb7UH5cddYvc1pwX3GbgWnzCju6QahH0mHpsHRW1nKe5JteMspx+6Dnt+KbvYrZp3ySH0dKD4wKZFmJWrsyQbqXT+yAd78ywc/TUfPLLMByZ4EjmJ5L2SpYCIZPUUeUanQnr7aHczZOqpFC8BsHle+LvkzLK9w2x+uX/luTfaKtakI4MhDd7O/Z8bEV1kg1yMeXayynMplOcMLXx6AXaaIU1+NmQ9db4dgpBuzAp00CvzJrPDf93F7fG8OeUlnZmJdpeqHDvnwFYmg9pGOTIukwwmwQAXcPaYgMCp7NTt5zsUQjxF6q8YxOzHWLQX3J2Nrbt8iGZos6BW3SdPb4wxxH893jk322fn3VhWXGZ0WeOXCBmKItmyAx/dBeRmSplR0Sxt3qzfe4r79hUw4WjGLOYqiL3WOf55rbbK9fhkfJNz5YTHHtzhSk8riqD0UGha/yHQr/RNitPAycN+oX/QYGyBVDELJ1qYE5WSW3kqUGF33MaotT32/Sd7P2yL2jt9qYfnk2T2woRW04qWCqdT5NVF7C49wwOAxc7VPKg1BtLGKyWtQxxXfWVxPDvCISiLv1IYyUxeSnTBwi8oVncZXTg7jYkgIl6I+so63CtOwPFNfkyfNOjmyOWWCqi4q9kxrcWlGzvCaz98Er2geDQPpjG1ZEckQyUgezZc5YzGIvMMzVVNC828/mVZiiaA4VjBlFeMo+YgHWvGSdyHwihPY161uDNIg6nZq+OiVprqciwaqqPjlFE+k340EcLqmuXLSF+sFNiDKBjxo5JIXYY3WZXbnIqtEYJyTGN/CkNcq4DX+yzZ1w9VKOV+smv6wqs71zrDTkCEg9XdqExuk7tei+CpzNySX8N4+hImqFAultNFqh0zH3OTetTWCGjXL2gpqEjEfsW7SOe52r3g8RzIg1NS6/y8doYHIuOtwem3Et/y7TPVD0YgoUu7GL7xoJNPabBC7WYJNJc6VfnhTvqrXKFbZEpHroDL67hEJa+vmw8R2hbCEtl7lJ8MSTDiWzLE0ebQ3Q8Lwpy4R0NDQ0aN8C4IIpofHuQmHLaEX6O//kumCZvyyZEO5Lq3VA/XT6o5schMIexsUtJAX5TGmXnYpKMVn2W8E9OYoF7SC5TQ0PJihnrHM6/DdebPTHEhQ9C+MpiRiz97+fGt/meHbxB8xz5eV2i+t9QAN5CgXUBwHR4Afs9DTLoxSR9jRl8oDyJ0roOxfa9wU8Dj5vEgRBiKN6DiEFTd0IKrOXmuWT3+2u3mg3ixj9/uZR5HihgfzbbhCjiSVQjg52keVfjy16kpknujTPy2I75x1uGw0aW16dBa9NrBW/lvB3StrrXBMiR1hPL7fq+6QZ7vscA/R8yL8x5eCufHtafBvrfRnNQ+riJVSVheWUzdChdkAMb5WuuYJ7XRT07TB+w2Nd5mL0+erUnAqItl8NGkV8FaNN4lXdQLDFwY/TzeLq578rFfpn6pwrRPXde7s5AD3IiI3GulcQJ0BtZMOz9advXpR+5N4Q0avekxq3wdw+vmDWKNP4PdYn4YRWtwutAV/KX9UzinhEzeU4HZnndGL2V3bnWuvX06Se2LeskUdcFiCntb03BpqBIM2pAqY4nW1gX+nv98mt8AS00jcCsQ+99ksWECNHcoz8V4L9i9GgglSXw2mWrMTlMc35YHFfAoHpvirzaEXMzJobj1wwe05584L45BQuSBIVagohroYxwz3KWB6LUS0czGLToCFS6YMuglwK1t9GHbcOdOIIPMJvBrNH+ZmsZWT++0JeWJfUwKWYin0mtasXE4Bf1J9yBwmH6/bmma5C0QkCzUJ6k1mg0h3ZGdOoA8ci4MlKr6YiA4I4bRVuxUeBrun95lxY6hWUBqWH+U91KZwMxSXVDmlpn1913H/UvRmFUuUEUnEz7sItvLRldaSsjifLQZRrjGLFLUXv+ljZkfHTnY81ERDPCWBYBHrsxLhNbm+Vfislb1BtfdN3Dbn3Dug+7KzDNT2L1QNkFsY/JpWL2z8zlrP28VoAUTndIr+m1rrdQbqxucDrrx5F1lfDTvSRV+VlcHyNQoDWVf4E9/saNowtUUIL/5Fg9EQC9l/kjsvrQq3MUBQ9mrta5NRT2Rs50Yf+FX71iwmbHe6TU6e83eSCCylO0jIoBVemHTOIBosp1xpF9/pJjuZDtR1LF+rN+sbMN44GQp++ZpLBazMuJ8wZehV0pvCIjYiByDEpya/2xixGFGxL6Ln0u6vH1rOuuhd+ci1Oq7U2GxM+aMl5Wj9tALuuwwUlRi19WyJ7IOfl1L5ud87VfRtWb+i54YjG7grvTwst/OKsNfRLjXBNKdmXl09Zslv6Rl46fJBiU1IFuvNAG7ndYQV9L2dLQ4GgggQILZlQFGSCpjafvMy/4QzM2qYqtVTSfDVbMogdYRN6ENHYfpsIGy04FBoq1hWgV4wcerRvqSVZcYx503iISmfIlhAdCxmDdY7s4FO+VKnLuHnQTP8a2TDeN+KqGL6TnVtXBvsSaeriE+7ieyzqE482T1OKCbeZAOkeCBGuwXsmJtmXDCIrdLESUDCJfdV56Fd1Y5dmJMtyZeH/Wp0x5z7b6tp1pNK84rLZmsCmODptr+KSGjEPa2Z7q2vpmm2Tjbr6pTgRwKr2iGxcORHmuvtmqIkgD32N1BLBwiX57y7DAoAAKEKAABQSwMEFAAIAAgACZdYPAAAAAAAAAAAAAAAAC4AAAA2MWZjMGZiZTEzYmM1MjIyYzVlNThiMGJjZjgyMzNhOVxTcGllbGVyIDIuanBnndN5ONT7Hgfw3+zD2GbsDIOhUalsYcTQyDIqSiHSQaLQlDXrMMyJyJKt0IlCV0TDidARWcIZZAljb8YazoSTZZK4Os9d/rl/3Hvfn+f71+fzfJ7v6/k+393hXQ4gZm1BsQBAYAAA7RWwOwaYAUg4HAGHIREIhIAAUlBIQlgIhRKSxYiLSijI4RQV5LBYJdXDBCUVDTwWq66/X0NTS1dXF0cgGhtoGx3W0dX+sQQkICAghBKSERaW0VbGKmv/z9l9C6CRwGPgMASkAoDRIAgatNsK4PbuCQP9FeAfAYEhUBgcgRQQRO0NVIsBYBAEAoZCYDAodK9L2+sDUDQMo6x1HC5+1h2h4i+hHZP2BIknVzZJ2vWtqOpcDogVEJSSlpGVU9tHUN9/QPeonr4B0dDshLmFpRXF+tx5ewfHC07OHlc8va5e8/YJDAq+FRIaFs74+XZc/J2ExPSMzKz7D7JzcgsKi57+rfhZSemvL6uqX9XU1r1ubml919be8Tur/8PA4BB7eGSUOzU9Mzs3/2lhcfXPL2vrG5v8r1s/XCAAAvpn/qMLvecCQ6EQKOKHCwQO+TGAhsKUteCY42cR7v7iKtoxSAly2pPKJgG8jt2K5OWAPkEpVV2u2uoP2l+y/w4W+3/J/gX7t2sUEIKA9h4PggZMgDVXtK/0vnXe47TCRB1GFadyOWOB53Rfrnoiufk1q6tuFpuO3Ml3Lp4+Tf7YMsrfGcii8pjaQx94xyjADQfjbPFf8pDu43Ih8bCahLnoP5Zq5+MwBU54IipvZH2DmcUUOvfuEqEh+achUmxmRadIxqvRTWOy7P1rHllRS8/c1/BH9Q6oT10ovDDgfh5AVJQEutrKj7gGvr3VENtnLnnZiD2d8lBhs+XgSNfx2Zf39xfeWPoCu2zC0fBhvpU9lM/9tUyrlPUgoGwm2IsTG81Rs+ReqkkKWuZFw331QCG6GwGlog6j1juPHW/vvN9Ryh1zbezFMqgh6FpT24k0PxFSadguEHQG0X/+rDkgsXeUZTnsDueCxUYU6YBx/9gJxcmQvAmRyDr3SDpoKQljfGeD+fgpv4TbeShg3nIwb5lSF0dOZPdKUEwNxsu09fJap1N8ilvzYWOR5JXMwAWmEHto0avykYxkJpp1xT8OcNtQiuiFs2O2qU/58xbfghm6AW3k8YvEr08CDCMY7+UbKztkXCWjVHo4pw27ryulUMnr2Rae0CKf2nEr6JUZOpxGI37taYlSHiLh+A95fm29E+RTjlI1giyFiOdHEL2pZNCLu1P6ydRIWvHC69JjzpOjXpM0448B2+MJHgayCBnijHtUFWjBBBV12IeksQrqXe+gbi+kFdXkQg+ykrKUMoYxyDWmLzOzAcGPuuTRnkCTXHh16ZB5y4EXzmdsJt6EQsUzerAhzOfXIIxVdgv1SNsQZtmbug4IxHKsukqHP+e0iWj6gZjq1Q+mcE3Z6cRy7kCQZea9UmergWkCFOhLJ854MJrmGjKejZiV2IHsNI/LQs8guqPR9Z6cRlzoVV4FfpifyPY40C2qA6H3LbvEQYjQ6c8b3aHvIqLbeuK3RON4XHZVM9Xrt1p0dXpSm82QRuf3SQa+2OhyPZl+yPknlxGbl6MunTc1F1Rt7OOniMxyEoZfMN+6A6l5MyBb/FusRXVO80ydi1j7eImscXckw/XCNrJ/5sOO3Fi3svLy1XQO5Pv4bdyWSLQcsLaoXkA3kt7IfCAVpRB/04lAHVlDam2xe+zXHHnKPv3ehpKfVMvOdcrKTM/ZK83vQLbY76tAKsrp5uYzlQDtNK2vYOGet6FaSo5gmmSZACZ187wIbYmb7crKJWo9KpPHmbmGOtvU3KpwsbD43cPRzlDMFP+1F5arzsxv0Ix0+Dq30hN/+BE5/UFNmp5OE1yNlFcU7hbyWAiXPGl8OtrhEsom17bywjGBkStw4szbJplF6Tns5r76qER1gPk6CObOfXPI01zkVRocqQka1kn14cexRl4wqbw+p1EnSTDTQTUmZrmbNiaxX0irRaZZ5fbZTwgw3WhpahdIlW4myfqeJPo/9xHsa6r6ggnyNq7sjcj3cCVgKKq/ZAzkLmzTSpec25PWUcnh4jejmLPVjQa3HemFY9j5hsDJ17Y/u4ry6v3LbfUKDXeBq8PXvd0cWrouGrieqcfmvw3uAMpXPnIfzacEo4061RqSBVrZgFvdztTVknVjxIxITxsT8mlSJMOCJjdYPlWbYjULJzflCHK+vLfyyBsX3PqJxRqzeZn4noXk8QrOVL6Tu20PqQDXy29ken2zjJcmeHUyUkZYZxAPtzX7i4ZI+Gv3V1mV2Z9hTRoCUMsvae0B0rhkWo4rIRJx5/dV8uDGDfRYV+suEDLbFr36R9TR9WQgzLVNNP7kFI/wzdb2Z2GvbpHewod32tVES7BZ25ZRpNCV1ISb2wpTETSbwRxnAsofzaEoWszgV7aRiGpajatJ5HW+F1C3eiuFDoprrLFvj5R1XBs3wTkDm74Hx2gWLFQnxeFiWC9FvqTDE6+U+OeRUR0bfUXMh6OwUw8vNifRJAd2AXvJjBXCFDjMrFmuiGvV6f3nMQ8iUesqm4BfVYx98/xi3x/VPMV56wEVzKjLE0ubnVbFVqxYhJg6ZC6aHvhOuvVZPwWcc332BIL/cNZAkW8XLbj1awM+xbcHFjrdlZQWXDSZNZ88JhMrWgmkPmFW6X4bo507Xd1QQx3a1NLoy7d3Q34XBlyeqSaoJRem2ffFCJVpI42PKyyGMzXSmsQ78dBkkNdlPwCbbvsUiLy5irKIbzERC6aSWqv8zAzSxUCXYuh+oI0JOu35MEk40ppdb/ZMAWEfw3RQP3U3yuDKWTo0f7LHNHz+RRj+fXB2sOhdE4kjH63iIzHWKiluRap+TJZCwsI9nZSiXwS3TjbtoD/Uyz8xL/buSwF0ulpEdTa9dhgVU3QSlT/xNFl/irp9B3myY7oW65H+28V1u2i5rWPcJpOV8m1i+3YLdxfoNQ/D8QhuUkumA6Cvj9ToqZ4HWnYB8tFFExTT7hv3QfwsA+FZ0GwRLqEmulgFGhmU/6Z+9BBprm3BqDMie3S/o+oNByg6rYMzuKgOOUjpXesRXVjwLBpu8b7xBqOclG8XnvE5wNchsWNVqvomlwfedHztEEpV0ZY823kLoFH2Ppb4RsLgvmi0d+6pNKVYVKA/lrGsFXCe0XO8wmPRF8dVbJw+Rrmp+1F4ZBfwNsV/yRt10lM9cU8f3tFkrPVRlue0r+Vdo1S9k16h8F2K6gzkcH+FKYOur6iJuEGZL2EWGYlylnDgUNr1cshJf2Xh4AB8pzX/u0QQpGYgF9gd+TtQSwcI2vgTCssJAABaCgAAUEsDBBQACAAIAAmXWDwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vhtj9w0EP5Mf4UVpKoHbC7vyap7rbgKROFokbYUCVUgx5kk7uVlsZ1e9n4Yf4A/xthJ9rUvV7WiRe1+ydqezDwzz9ieyeJ+X1fkBQjJ2+bMcm3HItCwNuNNcWZ1Kp8l1v17txYFtAWkgpK8FTVVZ5Zve5ae7/i9W18sZNleEVoZkaccrs6snFYSLCJXAmgmSwC1N0+7nlecivXj9DkwJbcLg5KHzapDK0p0OMfq7ILLaXiqDeZtowiR/BoQtKfnFqcGywI6VvGM00bbM9hQiJArnqlSy0aBRUrgRYn6osgZ1LG2FdlyLRXUpP8dRHtmeW6og7EeRv4wkoxWaDF0zNLuyKiBF0tQCkMnCe1h61QheLY3eCjP22o7tWp5ox7QleqEibs/Ti3VWhtAW0ID/rYpKhjnPAxLCewybfvlEAV/UP1kvTKvGEBp8aCtWkEEvhCGKDA+0+FpZDTSjZRjZBwjMerQSjfr7twzEuaZDk8jVfFmgDZ67k5eu85khkuiJ3QYMV02zlc0herMskjXcHUxDRRnl6Or7vDCo65OMU93s2Cj031fOhenB/mzuATRQDUkSYPcdm0nyQtaTbYMkAwYr3E4LIwhoZquXxHAMJtBIWACPmT5EDCzupeIB9OL0wmExiARK1O4XdEfpX3Ru0mVLbLzUGpXK/IUN2tlkYwqvaw3RQU14I5RJjkQarEN0jmvMtcym4qj2YbWKOLPAyePMxb4TsSoG8XhPAjjGOJ5Nvf8NH32UytS+/mqGGDz5pyyy0K0XZMdBUcqKtQvOp9JY+JtcqDHjWPPI2fnhxm8xjU7SZyD6evhaDrINFUioQ1IabaD2k18cyC15myZTpHR3R1guP6KxMdjaFXSXaN0DWKPKaPu5zbb5482GFxDDp4lK+2MzrQVQDYerhNKskKVZrNvAGHuDTTdgDDvgxDm2lE83/3FE2Pz/d9nxo4Y8z8IYzO8pwNDkmejvd1f8MmThKECwdnGh/5PaUhCy91o393c7a92fXsfvcpzTwd79F1Dv5nvo5zE6wgFa4712cxUITXtR2SEprKtOgVLhndLc9EyE6UJ4Fj0+I6R7fWl75nKBed8/SfnPWzLELxD+DVecnTPqRslxn9D0PqYIM/2Pk5+whvT476Enjj+H9JDD8mZuXbwEnb2i7Q30+N8FOT4STyRE32c5PTYbEndyE2h/a0TeUrLBnu6frUd3ulPyBmh5CtypyczgsfeyR93MPNOyNdEbzFyekR13jWm5rSOVL+Hu+NtN+jrL4/HeS5BmcsvGfiaxa9LkRuAf32Un0Cv3DHEt//qWnX3B47AJIdSKpJ1JBPAyTmVl6BSWlW4xmty+0vXuftEUN4gozb5EXSellQRCQioIdiiAj6NmK4EviFa4DlcAcc+A0FfYreBIHhZE+w0YGYksalgpSLYLdtm/D1v0N2sE6wk3/FGUnVt9CxZySEdXxJQVDu6tX1S//N3UXFsMYlmelSOfGPvLGgnEQ1HvYjzHD3S/miMg1OYpeoaI6DsYfyoVTgC/YbE9rDL8T00UZML/H+NDTNUA9hzKHijbWPLlOG6APQFTSxXHOMv7CG41nF2KmTA2qfjPVYrb0q4o2rFfJyQeDTm2+8gpkfXre/Ufx7WbSZhA9uLxmrN2y3P3qbQjA4LTYjdMHdiYBRSNk/cIPTCPMqTeO7kfuDTZ2N83XduDxw7SIYd59vuXmvnRJ98tXnMVHzIVOInXuT5juuHGWUZ88MkSJhD43kQ5H7CJqaI/+6tdxQedGwjbcFn2t5AW3JIW+TmzMlTcP2UhZ7nsRDCJHVSliee79P5hjbvXWlz7HiftnG7OYfNnfcJ8na6+3HMfBAeP1rf+xdQSwcIioNFyHUFAADmFgAAUEsBAhQAFAAIAAgACZdYPNGncbwBFAAAmhQAACkAAAAAAAAAAAAAAAAAAAAAADM5NDBmN2RjNDMwNmNhMTY3NTk0NTc3ZTc5ZDkyM2JiXEtvcmIuanBnUEsBAhQAFAAIAAgACZdYPKeEiMM8CgAAxwoAAC0AAAAAAAAAAAAAAAAAWBQAAGU3MTVmMDdlY2FlYmM5ODE0NTI1ZjZmODc5MGYzNDNhXFNwaWVsZXIxLmpwZ1BLAQIUABQACAAIAAmXWDyX57y7DAoAAKEKAAAuAAAAAAAAAAAAAAAAAO8eAAA4MzgyNjIzMDEzNWRhY2RjMzU4NDhjMGE3OTQ0ZjM4Y1xTcGllbGVyIDMuanBnUEsBAhQAFAAIAAgACZdYPNr4EwrLCQAAWgoAAC4AAAAAAAAAAAAAAAAAVykAADYxZmMwZmJlMTNiYzUyMjJjNWU1OGIwYmNmODIzM2E5XFNwaWVsZXIgMi5qcGdQSwECFAAUAAgACAAJl1g8ioNFyHUFAADmFgAADAAAAAAAAAAAAAAAAAB+MwAAZ2VvZ2VicmEueG1sUEsFBgAAAAAFAAUApAEAAC05AAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" /> | |
<br\> | <br\> | ||
<br\> | <br\> | ||
Zeile 20: | Zeile 20: | ||
|align = "left" width="450"| | |align = "left" width="450"| | ||
[[Bild:Laufzettel.png|50px]] Hast du deine ermittelten Wurfbahnen notiert? <br\> | [[Bild:Laufzettel.png|50px]] Hast du deine ermittelten Wurfbahnen notiert? <br\> | ||
− | Dann ist dir sicher aufgefallen, dass sich die Form unserer Gleichung stark verändert hat. Wie bereits erwähnt ist die '''Scheitelpunktform''' eine alternative Darstellung für die Normalform. | + | Dann ist dir sicher aufgefallen, dass sich die Form unserer Gleichung stark verändert hat. Wie bereits erwähnt, ist die '''Scheitelpunktform''' eine alternative Darstellung für die Normalform. |
<br\> | <br\> | ||
Quadratische Funktionen lassen sich auch so darstellen: | Quadratische Funktionen lassen sich auch so darstellen: | ||
Zeile 28: | Zeile 28: | ||
</div> | </div> | ||
<br\> | <br\> | ||
− | <big>Vorsicht</big>: Vor x<sub>s</sub> steht ein Minus. Ist x<sub>s</sub> also positiv, bleibt das Minus davor bestehen. Ist x<sub>s</sub> negativ, wird es zum Plus.<br\> | + | '''<big>Vorsicht</big>:''' Vor x<sub>s</sub> steht ein '''Minus'''. Ist x<sub>s</sub> also positiv, bleibt das Minus davor bestehen. Ist x<sub>s</sub> negativ, wird es zum Plus.<br\> |
Der Parameter a bleibt also erhalten, b und c fallen weg. Dafür bekommen wir zwei Parameter hinzu. | Der Parameter a bleibt also erhalten, b und c fallen weg. Dafür bekommen wir zwei Parameter hinzu. | ||
− | Jetzt kannst du noch einmal testen, | + | Jetzt kannst du noch einmal testen, wofür '''x<sub>s</sub>''' und '''y<sub>s</sub>''' stehen. |
===Aufgabe 15=== | ===Aufgabe 15=== | ||
− | Verschiebe x<sub>s</sub> und y<sub>s</sub> | + | Verschiebe x<sub>s</sub> und y<sub>s</sub> im nebenstehenden Bild. Was kannst du feststellen? |
Ordne jedem Fall eine Beispielgleichung zu.<br\> | Ordne jedem Fall eine Beispielgleichung zu.<br\> | ||
Zeile 57: | Zeile 57: | ||
− | { | + | {| border="0" cellpadding="5" cellspacing="2" style="border: 1px solid {{{Rand|#ca1321}}}; background-color: {{{Hintergrund|#ffffff}}}; border-left: 5px solid {{{RandLinks|#ca1321}}}; margin-bottom: 0.4em; margin-left: auto; margin-right: auto; width: {{{Breite|100%}}}" |
− | + | |- | |
+ | | <div style="float:right; margin:0px; margin-top:5px">[[Bild:Maehnrot.jpg|100px]]</div> | ||
+ | <div style="font: 10pt Verdana; font-weight:bold; padding:5px; border-bottom:1px solid #AAAAAA;">Merke:</div> | ||
+ | '''x<sub>s</sub>''' hat immer den gleichen Wert wie die '''x-Koordinate des Scheitels''' und '''y<sub>s</sub>''' hat immer den gleichen Wert wie die '''y-Koordinate des Scheitels'''. | ||
+ | |} | ||
+ | |||
+ | <br\> | ||
===Aufgabe 16=== | ===Aufgabe 16=== | ||
Zeile 70: | Zeile 76: | ||
In dieser Funktion hat x<sub>s</sub> den Wert '''2(Wert einfügen)''' und y<sub>s</sub> den Wert'''-4(Wert einfügen)'''.<br/> | In dieser Funktion hat x<sub>s</sub> den Wert '''2(Wert einfügen)''' und y<sub>s</sub> den Wert'''-4(Wert einfügen)'''.<br/> | ||
</div> | </div> | ||
− | + | <br\> | |
+ | [[Bild:Laufzettel.png|50px]] Schreibe die Funktionsgleichung auf! <br\> | ||
|width=100px| | |width=100px| | ||
|valign="top"| | |valign="top"| | ||
Zeile 77: | Zeile 84: | ||
|} | |} | ||
+ | <br\> | ||
===Aufgabe 17=== | ===Aufgabe 17=== | ||
− | In dem Memory sind Funktionsgleichungen und die Graphen der Funktionen versteckt. Finde die passenden Paare von Funktionsgeleichung und Graph! Dabei gilt immer a=1. Viel Vergnügen! | + | In dem Memory sind Funktionsgleichungen und die Graphen der Funktionen versteckt. Finde die passenden Paare von Funktionsgeleichung und Graph! Dabei gilt immer a=1.<br\> |
+ | Viel Vergnügen! | ||
::{|border="0" cellspacing="0" cellpadding="4" | ::{|border="0" cellspacing="0" cellpadding="4" | ||
Zeile 126: | Zeile 135: | ||
<br\> | <br\> | ||
<br\> | <br\> | ||
− | [Bild:Laufzettel.png|50px]] Hast du die Funktionsterme gefunden und auf deinem Laufzettel notiert? <br\> | + | [[Bild:Laufzettel.png|50px]] Hast du die Funktionsterme gefunden und auf deinem Laufzettel notiert? <br\> |
Gut! Dann kannst du dich an die nächste Übung machen. | Gut! Dann kannst du dich an die nächste Übung machen. | ||
<br\> | <br\> | ||
Zeile 184: | Zeile 193: | ||
Warst du erfolgreich? <br\> | Warst du erfolgreich? <br\> | ||
− | [[Bild:Laufzettel.png|50px]] Dann | + | [[Bild:Laufzettel.png|50px]] Dann bewerte die Aufgaben auf dem Laufzettel, <br\> |
− | + | danach gehts jetzt zum | |
− | <div algin="left">[[Variationen/Quadratische Funktionen2/Endspurt|<math>\Rightarrow</math> Endspurt]]</div> | + | <big><div algin="left">[[Variationen/Quadratische Funktionen2/Endspurt|<math>\Rightarrow</math> Endspurt]]</div></big> |
<br\> | <br\> | ||
<div align="left">[[Variationen/Quadratische Funktionen2|<math>\Leftarrow</math> Zurück zur Übersicht]]</div> | <div align="left">[[Variationen/Quadratische Funktionen2|<math>\Leftarrow</math> Zurück zur Übersicht]]</div> |
Aktuelle Version vom 15. März 2010, 18:23 Uhr
Quadratische Funktionen und Basketball
Neben der Normalform gibt es auch die Scheitelpunktform.
Mit dieser kannst du in der nächsten Aufgabe experimentieren.
Aufgabe 14
Merke:
xs hat immer den gleichen Wert wie die x-Koordinate des Scheitels und ys hat immer den gleichen Wert wie die y-Koordinate des Scheitels. |
Aufgabe 16
In dieser Funktion hat xs den Wert 2(Wert einfügen) und ys den Wert-4(Wert einfügen). |
|
Aufgabe 17
In dem Memory sind Funktionsgleichungen und die Graphen der Funktionen versteckt. Finde die passenden Paare von Funktionsgeleichung und Graph! Dabei gilt immer a=1.
Viel Vergnügen!
Hast du die Paare gefunden? Dann kennst du dich mit der Scheitelpunktform schon recht gut aus. Allerdings haben wir bisher immer nur mit a=1 gearbeitet. Das ändern wir jetzt.
Bewerte die Aufgaben auf dem Laufzettel, ehe wir mit veränderlichem a fortfahren!
Bestimmen der Scheitelpunktform mit variablem a
In dem Bild unten ist eine quadratische Funktion mit a ungleich 1 angezeigt. Auf dem Graphen der Funktion liegen zwei Punkte: S, der Scheitel, und P. Neben dem Graphen steht eine kurze Anleitung für die Berechnung von a und das Aufstellen der Funktionsgleichung. Vollziehe jeden Schritt der Anleitung nach. Danach sollst du eigenständig a bestimmen und Funktionsgleichungen aufstellen.
Konntest du die Anleitung nachvollziehen? Mit diesem Verfahren kannst du nun jede quadratische Funktion bestimmen, wenn du ihren Scheitel kennst und die Koordinaten eines Punktes, der auf der Parabel der Funktion liegt.
Dann kannst du jetzt loslegen!
Aufgabe 18
Hast du die Funktionsterme gefunden und auf deinem Laufzettel notiert?
Gut! Dann kannst du dich an die nächste Übung machen.
Aufgabe 19
In dieser Aufgabe sind jeweils die Koordinaten des Scheitelpunktes und die Koordinaten von einem weiteren Punkt auf der Parabel gegeben. Berechne jeweils den Funktionsterm auf dem Laufzettel und trage in die Lücke die Werte für a, xs und ys ein. Die Anleitung hilft dir wieder bei der Berechnung. Viel Erfolg!
- a)
Eine Parabel hat ihren Scheitel S bei (-2/3) und einen Punkt P(2/14,2), der auf der Parabel liegt.
xs hat den Wert -2(Wert einfügen).
ys hat den Wert 3(Wert einfügen).
a hat den Wert 0,7(Wert einfügen).
- c)
Eine Parabel hat ihren Scheitel S bei (3/-5) und einen Punkt P(6/4), der auf der Parabel liegt.
xs hat den Wert 3(Wert einfügen).
ys hat den Wert -5(Wert einfügen).
a hat den Wert 1(Wert einfügen).- b)
Eine Parabel hat ihren Scheitel S bei (-1/4) und einen Punkt P(2/-0,5), der auf der Parabel liegt.
xs hat den Wert -1(Wert einfügen).
ys hat den Wert 4(Wert einfügen).
a hat den Wert -0,5(Wert einfügen).
- d)
Eine Parabel hat ihren Scheitel S bei (-4/6) und einen Punkt P(-6/-2), der auf der Parabel liegt.
xs hat den Wert -4(Wert einfügen).
ys hat den Wert 6(Wert einfügen).
a hat den Wert -2(Wert einfügen).Warst du erfolgreich?
Dann bewerte die Aufgaben auf dem Laufzettel,
danach gehts jetzt zum