Lineare Gleichungssysteme rechnerisch lösen/Station 3: Unterschied zwischen den Versionen
Zeile 61: | Zeile 61: | ||
<div class="lueckentext-quiz"> | <div class="lueckentext-quiz"> | ||
− | + | <center> | |
− | + | {| | |
− | | + | |- |
− | + | | y || = || -3x + 4 | |
− | | + | |- |
− | + | | || || | |
− | | + | |- |
− | + | | y || = || -3 * '''0,6''' + 4 | |
+ | |- | ||
+ | | || || | ||
+ | |- | ||
+ | | y || = || '''- 1,8''' + 4 | ||
+ | |- | ||
+ | | || || | ||
+ | |- | ||
+ | | y || = || '''2,2''' | ||
+ | |} | ||
+ | </center> | ||
+ | |||
</div> | </div> | ||
Um sicherzugehen, dass dein Punkt ( 0,6 | 2,2 ) auch die Lösung des Linearen Gleichungssystem ist, mache die Probe, indem du den Punkt in deine beiden Anfangsgleichungen einsetzt. | Um sicherzugehen, dass dein Punkt ( 0,6 | 2,2 ) auch die Lösung des Linearen Gleichungssystem ist, mache die Probe, indem du den Punkt in deine beiden Anfangsgleichungen einsetzt. |
Version vom 3. Januar 2010, 00:34 Uhr
Station 3
Aufgabe 1
Die vorherige Aufgabe hast du mit dem Gleichsetzungsverfahren gelöst. Versuche nun das folgende Lineare Gleichungssystem mit diesem Verfahren zu lösen!
( I ) y + 3x = 4 und ( II ) 3y = 6x + 3
( I ) y + 3x = 4
y = -3x + 4
( II ) 3y = 6x + 3
y = 2x + 1
Wenn du dir nun die beiden Gleichungen anschaust, merkst du sicher, was du nun gleichsetzen kannst, um eine Gleichung mit einer Varaiablen zu bekommen.
-3x + 4 = 2x + 1
-3x + 4 | = | 2x + 1 |
-3x - 2x | = | 1 - 4 |
-5x | = | -3 |
x | = | 3/5 |
x | = | 0,6 |
y | = | -3x + 4 |
y | = | -3 * 0,6 + 4 |
y | = | - 1,8 + 4 |
y | = | 2,2 |
Um sicherzugehen, dass dein Punkt ( 0,6 | 2,2 ) auch die Lösung des Linearen Gleichungssystem ist, mache die Probe, indem du den Punkt in deine beiden Anfangsgleichungen einsetzt.
Zuerst Gleichung ( I ):
y + 3x = 4
2,2 + 3 * 0,6 = 4
2,2 + 1,8 = 4
4 = 4
Wir nehmen nun noch die Gleichung ( II )
3y = 6x + 3
3 * 2,2 = 6 * 0,6 + 3
6,6 = 3,6 + 3
6,6 = 6,6
Somit lautet die Lösung des Linearen Gleichungssystems L = { ( 0,6 | 2,2 ) }