Lernpfad1: Unterschied zwischen den Versionen
(Link geändert) |
|||
Zeile 191: | Zeile 191: | ||
− | '''→[[ | + | '''→[[Lernpfade/Addition von Brüchen/Lernpfad1_2|Hier geht's zur 2. Seite]]''' |
Version vom 4. Januar 2010, 17:11 Uhr
Lernpfad
|
- Zeitbedarf: 35 Min.
- Material: Laufzettel und einen Stift
1.Station: Addition von gleichnamigen Brüchen
Einführung:
Svenja geht jeden Morgen um 7.00 Uhr aus dem Haus, um pünklich in der Schule zu sein. Sie muss h zu Fuß zur Bushaltestelle laufen. Dort steigt sie in den Schulbus ein, der h bis zur Schule braucht.
Wie lange ist sie insgesamt unterwegs?
Die Veranschaulichung durch den Schieberegler hilft dir beim Lösen der Aufgabe. Indem du den Schieberegler mit der linken Maustaste nach rechts verschiebst, ändert sich der jeweilige Zähler. Der Nenner bleibt stets gleich.
Nun ist es deine Aufgabe, die Zeit, die Svenja unterwegs ist mit dem Schieberegler zu berechnen. Gebe dazu in dem ersten Schieberegler die h ein und addiere die h im zweiten Schieberegler. Gelingt dir dies, kannst du auf der rechten Seite das Ergebnis in den dargestellten Uhren ablesen.
Welche Lösungen sind richtig? () (!) ()
Berechne nun die folgenden Aufgaben mit Hilfe des Schiebereglers. Schreibe hierzu in das linke Feld den Zähler und in das rechte den Nenner. Bist du damit fertig, klicke auf "Prüfen!", um zu sehen ob du die Aufgabe richtig gelöst hast. Falls deine Lösung falsch ist, wird sie automatisch wieder gelöscht. Schaue dir die Schieberegler dann nochmal genau an und probier es nochmal!
a)
= 11 (Zähler) /12 (Nenner)
b)
= 7 (Zähler) /12 (Nenner)
c)
= 19 (Zähler) /12 (Nenner)
Kreuze nun die zu den einzelnen Bildern dazugehörige Additionsaufgabe an und prüfe dein Ergebnis.
Schreibe anschließend in das Kästchen nebenan die Lösung der Rechnung und prüfe dein Ergebnis.
(!) (!) () |
= 6 (Zähler) /8 (Nenner) = 3 (Zähler) /4 (Nenner) (gekürzte Lösung) |
(!) () (!) |
= 17 (Zähler) /24 (Nenner) |
() (!) (!) |
= 13 (Zähler) /20 (Nenner) |
Nachdem du nun einige Erfahrungen zur Addition von Brüchen gemacht hast, wird es dir leicht fallen das inhaltliche Verständnis der Additionsregel von Brüchen zu verstehen.
Beispiel: 2 Neuntel + 3 Neuntel = 5 Neuntel
oder
An diesem Beispiel kannst du erkennen, dass der Nenner sich nie ändert (Neuntel / ). Nur die Zähler werden addiert und sagen etwas über die Anzahl der Einheiten aus.
Brüche, die denselben Nenner haben, nennt man 'gleichnamige Brüche'.
Im Folgenden ist nun alles zusammengefasst, was du über die Addition von gleichnamigen Brüchen wissen musst.
Lese es dir konzentriert durch!
Allgemein: |
+ =
|