Lineare Gleichungssysteme rechnerisch lösen/Station 5: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
Zeile 81: Zeile 81:
 
'''<div style="color:#CD661D  ">Um sicherzugehen, dass dies auch die Lösung deines Linearen Gleichungssystems ist, mache die Probe, indem du x und y in deine beiden Anfangsgleichungen einsetzt.</div>'''
 
'''<div style="color:#CD661D  ">Um sicherzugehen, dass dies auch die Lösung deines Linearen Gleichungssystems ist, mache die Probe, indem du x und y in deine beiden Anfangsgleichungen einsetzt.</div>'''
  
'''Wenn du die Probe gemacht hast, dann gib die Lösung deines Linearen Gleichungssystems an.'''
+
'''Wenn du die Probe gemacht hast, dann gib die Lösungsmenge deines Linearen Gleichungssystems an.'''
  
 
<div class="lueckentext-quiz">
 
<div class="lueckentext-quiz">
  
L = { ( '''3 ( x - Koordinate )''' / '''-1 ( y - Koordinate )''' }
+
L = { ( '''3 ( x - Koordinate )''' / -1 }
  
 
</div>
 
</div>

Version vom 16. Januar 2010, 19:49 Uhr

Station 5

Aufgabe 1

Versuche nun das folgende Lineare Gleichungssystem mit dem Einsetzungsverfahren zu lösen!


( I )  x - 3y = 6     und    ( II )  y + 7 = 2x                   Motivation Hatos 16.PNG


Löse eine deiner beiden Gleichungen nach y auf!   Wir nehmen hier die Gleichung ( II )

( II )   y + 7 = 2x

y = 2x - 7


Wir wenden nun das Einsetzungsverfahren an, indem wir 2x + 7 für y in die Gleichung ( I ) einsetzen.


x - 3 * ( 2x - 7 ) = 6
     
x - 6x + 21 (Zahl eingeben) = 6
     
-5x + 21 = 6 / - 21
     
-5x = - 15 / : (- 5)
x = 3 (Zahl eingeben)



Berechne nun den y - Wert, indem du x in eine deiner beiden Anfangsgleichungen einsetzt.  Nimm hier Gleichung ( I ).


x - 3y = 6
     
3 - 3y = 6 / - 3
     
-3y = 3 / : ( - 3 )
     
y = - 1


Um sicherzugehen, dass dies auch die Lösung deines Linearen Gleichungssystems ist, mache die Probe, indem du x und y in deine beiden Anfangsgleichungen einsetzt.

Wenn du die Probe gemacht hast, dann gib die Lösungsmenge deines Linearen Gleichungssystems an.

L = { ( 3 ( x - Koordinate ) / -1 }

 


Motivation Hatos 17.PNG


Aufgabe 2

Bei den folgenden Linearen Gleichungssystemen wurde das Einsetzungsverfahren angewandt. Ordne nun dem jeweiligen Linearen Gleichungssytem die zugehörige Gleichung zu.

( I ) 5x + 3y = -3 und ( II ) y = 2x + 10 5x + 3 * (2x + 10) = -3
( I ) 19x + 4y = 18 und ( II ) y = -3x + 11 19x + 4 * (-3x + 11) = 18
( I ) x = 5y + 7 und ( II ) 15x + 13y = 17 15 * (5y + 7) + 13y = 17

 


Hatos Merke.PNG
Das Einsetzungsverfahren!

Beim Einsetzungsverfahren bildet man aus zwei Gleichungen mit zwei Variablen zunächst eine Gleichung mit einer Variablen.

1. Schritt: Löse eine der Gleichungen nach einer Variablen auf und setze den Term hierfür in deine andere Gleichung ein, um den Wert einer Variablen zu berechenen.

2. Schritt: Berechne den Wert der anderen Variablen, indem du den Wert, den du bereits kennst in eine deiner beiden Anfangsgleichungen einsetzt.

3. Schritt: Mache die Probe und gib die Lösungsmenge an.


Hier gehts zu Station 6

Hier gehts zurück zur Station 4