Quadratische Funktionen: Unterschied zwischen den Versionen
K (→Quadratische Funktionen und Klippenspringen) |
|||
Zeile 15: | Zeile 15: | ||
}} | }} | ||
<br /> | <br /> | ||
− | Schön, nun wissen wir, dass wir es mit Parabeln zu tun haben. Diese sind jedoch nicht immer in der starren Form f(x)=x² dargestellt. In der folgenden Aufgabe kannst du diese Parabel durch | + | Schön, nun wissen wir, dass wir es mit Parabeln zu tun haben. Diese sind jedoch nicht immer in der starren Form f(x)=x² dargestellt. In der folgenden Aufgabe kannst du diese Parabel durch Schieben des Punktes auf dem Schieberegler [[Bild:Schieberegler.bmp]] verändern. |
Aber sieh dir das selbst mal an. | Aber sieh dir das selbst mal an. | ||
Version vom 20. Februar 2010, 16:51 Uhr
1. Fußball-WM 2006 - Wasserverbrauch 2. Quadratische Funktionen und Klippenspringen 3. Übungen 4. Quadratische Funktionen und Volleyball 5. Quadratische Funktionen und Fußball
Quadratische Funktionen und Klippenspringen
Aufgabe 5
Bei der Suche nach einer passenden Sprungbahn ist dir sicherlich aufgefallen, dass sich der Name der Funktion geändert hat. Vor dem x² ist plötzlich eine Zahl erschienen. Unsere Funktion erhält also eine neue Geleichung: . Mit der Manipulation des Schiebereglers hast du a verändert. Die Auswirkungen von unterschiedlichen Werten für a kannst du in der nebenstehenden Abbildung noch einmal testen.
Aufgabe 6Hast du mit a etwas experimentiert? Ist a > 0, dann ist die Parabel enger (gestreckt) als die Normalparabel. Für 0 < a < 1 ist die Parabel weiter (gestaucht) als die Normalparabel. Ist a negativ, so ist die Parabel nach unten geöffnet . Hast du die Aufgabe gelöst? Präge dir die jeweilige Auswirkung von a gut ein!
|
|
Mit deinen neugewonnenen Erkenntnissen kannst du die nächsten Aufgaben lösen.