Weitere Aufgaben: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
K
K
Zeile 36: Zeile 36:
 
[[Bild:KS_2.Lernpfad_Aufgaben_2.png‎]]
 
[[Bild:KS_2.Lernpfad_Aufgaben_2.png‎]]
 
</div>
 
</div>
 +
 +
Wenn du fertig bist, geht es hier weiter zu einem der anderen beiden Lernpfade: <br />
 +
* [[Benutzer:Kathrin_Fuchs/Wiederholungen_zum_Dreieck | Wiederholungen zum Dreieck]]<br />
 +
* [[Benutzer:Kathrin_Fuchs/WSW_und_SSW_g | WSW-Satz und SSW<sub>g</sub>-Satz]]

Version vom 25. Februar 2010, 11:09 Uhr

1. Kann man mit den gegebenen Größen ein Dreieck ABC eindeutig konstruieren?

Ja Nein
a = 2,4 cm, b = 3,0 cm, c = 5,6 cm
a = 6,2 cm, b = 3,7 cm, c = 2,5 cm
a = 4,8 cm, b = 3,5 cm, \gamma = 74°
b = 5,9 cm, c = 7,3 cm, \alpha = 22°

Punkte: 0 / 0


1. Konstruiere mit GeoGebra ein Dreieck ABC aus den angegebenen Größen.
Öffne dazu das GeoGebra-Fenster mit Doppelklick auf das Applet!
Gib die fehlenden Größen an und runde auf eine Stelle nach dem Komma!
Achte auch auf die Größenangaben (m, dm, cm, mm)!

a) a = 5,3 cm, b = 3,1 cm, c = 4 cm, \alpha = °, \beta = °, \gamma = °
b) a = 0,45 dm, b = 55 mm, c = 6,5 cm, \alpha = °, \beta = °, \gamma = °
c) a = cm, b = 35 mm, c = 5,1 cm, \alpha = 65°, \beta = °, \gamma = °
d) a = 4,5 cm, b = mm, c = 0,05 m, \alpha = °, \beta = 52°, \gamma = °

Punkte: 0 / 0


1. Es soll ein Tunnel in den Berg gebohrt werden, damit man schneller auf die andere Seite kommt.
Dafür haben Vermessungsingenieure ein Geländedreieck (siehe Abbildung) erstellt.

a) Ermittle die Länge des Tunnels. Runde dein Ergebnis auf eine Stelle nach dem Komma.
Der Tunnel ist km lang.
b) 100 Meter Tunnellänge kosten 1,2 Mio. Euro. Was kostet der Tunnelbau insgesammt?
Runde dein Ergebnis auf keine Stelle nach dem Komma.
Der Tunnelbau kostet insgesammt rund Mio. Euro.

Punkte: 0 / 0

KS 2.Lernpfad Aufgaben 2.png

Wenn du fertig bist, geht es hier weiter zu einem der anderen beiden Lernpfade: