Zerlegungsgleichheit von Figuren: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
(Kapitän Check Aufgabe: Welche ist die größte Insel?: -> mit useLocalJar=true und anderen Maßen)
(Kapitän Check Aufgabe: Welche ist die größte Insel?: neues applet eingefügt. (funktioniert :))
Zeile 12: Zeile 12:
 
* Was fällt Dir auf? Welche ist die größte Insel?
 
* Was fällt Dir auf? Welche ist die größte Insel?
 
<br>
 
<br>
<ggb_applet height= "540" width="870" showResetIcon="true" filename="Ebert_AufgabeKapitaenInsel2.ggb‎" useLocalJar = "true" />
+
<ggb_applet height= "540" width="870" showResetIcon="true" filename="Ebert_Insel.ggb‎" useLocalJar = "true" />
 
<br>
 
<br>
 
<br>
 
<br>

Version vom 15. Juli 2009, 18:36 Uhr

Zerlegungsgleichheit von Figuren

Ebert MotivatorenEinstiegFI.jpg

1.Station: Einführung

Kapitän Check Aufgabe: Welche ist die größte Insel?


Ebert KapitänCheckInsel.jpg

Aufgabenstellung:
Du siehst hier die 3 schwarzen Inseln. Darunter befinden sich alle Teilfiguren, mit denen man die Inseln vollständig zusammensetzen kann. Du kannst diese Teilfiguren auf die Inseln ziehen.
  • Überlege Dir zunächst selbst, wo die nächste Teilfigur platziert werden könnte.
  • Wenn Du eine Hilfestellung brauchst, dann Klicke die Kontrollkästchen an.
  • Was fällt Dir auf? Welche ist die größte Insel?





Trage hier den Namen der Insel ein, die am größten ist:

Die größte Insel ist Isola Bella (entweder Isola Grande, Isola Bella oder Isola Piccola eintragen)

Begründe Deine Antwort, warum ist diese Insel die größte?

Die Figuren A und C sind gleich groß, da sie mit sechs Teilfiguren ausgelegt werden können, die jeweils kongruent zueinander sind.


Figur B kann mit einer Teilfigur, dem grauen Dreieck mehr ausgelegt werden, deshalb ist sie die größte der drei Inseln.



Ebert MotivatorHinweis.jpg
  • Figuren, die mit der gleichen Anzahl kongruenter Teilfiguren ausgelegt werden können, kann man natürlich auch in diese Teilfiguren zerlegen.
  • Da die Inseln A und C in die gleiche Zahl kongruenter Teilfiguren zerlegt werden können, nennt man Figur A und C daher auch zerlegungsgleich,

2.Station: Das Prinzip der Zerlegungsgleichheit


Ebert Zerlegungsgleiche Figuren.jpg
Das Sechseck und das Quadrat wurden in jeweils fünf Teilfiguren zerlegt.
Diese Teilfiguren sind paarweise zueinander kongruent, d.h. es gibt immer ein Paar zueinander kongruenter Figuren.
Aus den Eigenschaften der Kongruenz ergibt sich daher, dass diese Teilfiguren den gleichen Flächeninhalt besitzen.


Der Flächeninhalt des Quadrates setzt sich in diesem Beispiel aus den Flächeninhalten der Teilfiguren F1 bis F5 zusammen.


Ergänze die fehlenden Felder

FQuadrat = F1 + F2 + F3 + F4 + F5 =FSechseck
Somit haben Sechseck und Quadrat in dem Beispiel den gleichen Flächeninhalt!


Nils fasst hier Dein Ergebnis kurz zusammen. Übertrage es in Dein Heft:


Ebert MotivatorMerke.jpg
  • Der Flächeninhalt der Gesamtfigur ergibt sich aus der Addition der Flächeninhalte der Teilfiguren.
  • Zwei Figuren besitzen den gleichen Flächeninhalt, wenn sie in kongruente Teilfiguren zerlegt werden können


Maja möchte Dir auch noch etwas sagen:


Ebert MotivatorHinweis.jpg Das ist ja klasse!
  • Man kann eine Figur also in Teilfiguren zerschneiden und diese Teilfiguren wieder zu einer neuen Figur zusammensetzen.

Ebert Zerlegungsgleiche Figuren.jpg

  • Der Flächeninhalt dieser beiden Figuren ändert sich dabei aber nicht.
  • Somit können wir feststellen, dass zwei Figuren den gleichen Flächeninhalt besitzen,
    obwohl wir den Flächeninhalt der einzelnen Teilflächen selbst noch gar nicht berechnen können!


Hierzu siehst Du ein kleines Beispiel:


Kannst Du zeigen, dass die beiden folgenden Figuren den gleichen Flächeninhalt haben?


Ebert Halbkreisbilderneu.jpg


Bist Du sicher,dass Du den Hinweis brauchst?
Hier findest du den Hinweis
Hier geht es weiter zur nächsten Station:
3. Station: Zusammenfassung