Lineare Gleichungssysteme rechnerisch lösen/Station 3: Unterschied zwischen den Versionen
Zeile 66: | Zeile 66: | ||
.. | .. | ||
</div> | </div> | ||
+ | |||
+ | [[Lineare Gleichungssysteme rechnerisch lösen/Station 4|Hier gehts zu Station 4]] |
Version vom 14. Dezember 2009, 17:02 Uhr
Station 3
Die vorherige Aufgabe hast du mit dem Gleichsetzungsverfahren gelöst. Versuche nun das folgende Lineare Gleichungssystem mit diesem Verfahren zu lösen!
( I ) y + 3x = 4 und ( II ) 3y = 6x + 3
Beim Gleichsetzungsverfahren muss bei beiden Gleichungen auf einer Seite dasselbe stehen, damit du die beiden Gleichungen gleichsetzen kannst. Löse also nun beide Gleichungen nach y auf.
( I ) y + 3x = 4
y = -3x + 4
( II ) 3y = 6x + 3
y = 2x + 1
Wenn du dir nun die beiden Gleichungen anschaust, merkst du sicher, was du nun gleichsetzen kannst, um eine Gleichung mit einer Varaiablen zu bekommen.
-3x + 4 = 2x + 1
Nun kannst du den x - Wert berechnen, indem du deine Gleichung nach x auflöst
-3x + 4 = 2x + 1
-3x - 2x = 1 - 4
-5x = -3
x = 3/5 x = 0,6
Super! Allerdings fehlt dir für die vollständige Lösung des Linearen Gleichungssystems noch der y - Wert. Hierfür musst du den x - Wert einfach nur in eine deiner beiden Gleichungen einsetzen. Wir nehmen hier Gleichung ( I )
y = -3x + 4 y = -3 * 0,6 + 4 y = - 1,8 + 4 y = 2,2
Um sicherzugehen, dass dein Punkt ( 1,8 | 2,2 ) auch die Lösung des Linearen Gleichungssystem ist, mache die Probe, indem du den Punkt in eine deiner beiden Anfangsgleichungen einsetzt. Wir nehmen hier die Gleichung ( II )
3y = 6x + 3 3 * 2,2 = 6 * 1,8 + 3 6,6 = 3,6 + 3 6,6 = 6,6
Somit lautet die Lösung des Linearen Gleichungssystems L = {( 1,8 | 2,2 )}
hhh
..