Lineare Gleichungssysteme rechnerisch lösen/Station 7: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
Zeile 1: Zeile 1:
 
==Station 7==
 
==Station 7==
 +
 +
<div style="border: 2px solid #008B00; background-color:#ffffff; padding:7px;">
 +
 +
=Aufgabe 1=
  
 
Versuche nun das folgende Lineare Gleichungssystem mit dem Additionsverfahren zu lösen.
 
Versuche nun das folgende Lineare Gleichungssystem mit dem Additionsverfahren zu lösen.
Zeile 64: Zeile 68:
  
 
</div>  
 
</div>  
 +
&nbsp;
 +
</div>
  
  

Version vom 21. Dezember 2009, 17:50 Uhr

Station 7

Aufgabe 1

Versuche nun das folgende Lineare Gleichungssystem mit dem Additionsverfahren zu lösen.

( I ) 3x + 7y = - 30 und ( II ) - 5x - 7y = 22

Addiere nun die ( I ) und ( II )

( I ) + ( II ) : ( 3x + 7y ) + ( -5x - 7y ) = -30 + 22

Nun kannst du die Gleichung wieder nach x auflösen.

   ( 3x + 7y ) + ( -5x - 7y ) = -30 + 22

   3x - 5x = -8

   -2x = -8

   x = 4

Nun musst du den x - Wert wieder in eine deiner beiden Gleichungen einsetzen, um y rauszufinden.

                          3x + 7y = -30

   3 * 4 + 7y = -30

   12 + 7y = -30

   7y = - 42

   y = -6

Mache nun die Probe, indem du den x - und y - Wert in deine beiden Anfangsgleichungen einsetzt.

Gleichung ( I ) : 3x + 7y = -30

                3 * 4 (x - Wert) + 7 * (-6) (y - Wert) = -30
                 12 (ausmultipliziert) - 42 = -30
                   -30 = -30

Gleichungs ( II ): -5x - 7y = 22

                  -5 * 4 (x - Wert) - 7 * (-6) (y - Wert) = 22
                    -20 + 42 (ausmultipliziert) = 22
                           22 = 22

Somit lautet die Lösung des Linearen Gleichungssystems L = { ( 4 (x - Wert)| -6 (y - Wert) ) }

 


Aufgabe 2 :

Lineare Gleichungssysteme rechnerisch lösen/Station 8

Lineare Gleichungssysteme rechnerisch lösen/Station 6