Übungen zu a: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
K (Aufgabe 2)
K (Aufgabe 3)
Zeile 33: Zeile 33:
 
<div style="border: 2px solid #00CD66; background-color:#ffffff; padding:7px;">
 
<div style="border: 2px solid #00CD66; background-color:#ffffff; padding:7px;">
  
===Aufgabe 3===
+
===Aufgabe 8===
 
'''Kreuze die zutreffenden Aussagen zu obigen quadratischen Funktionen an. Es sind jeweils mehrere Antworten richtig. '''
 
'''Kreuze die zutreffenden Aussagen zu obigen quadratischen Funktionen an. Es sind jeweils mehrere Antworten richtig. '''
 
<div class="multiplechoice-quiz">
 
<div class="multiplechoice-quiz">

Version vom 20. Februar 2010, 00:46 Uhr

Aufgabe 7

Ordne den blaugefärbten Parabeln die jeweils richtige Gleichung zu. Die Normalparabel (schwarz) dient dir als Orientierung.

Hilfe


Maehnrot.jpg
Merke:

Ist a = 1 heißt der dazugehörige Graph Normalparabel.
Ist a > 0, dann ist die Parabel enger (gestreckt) als die Normalparabel.
Für 0 < a < 1 ist die Parabel weiter (gestaucht) als die Normalparabel.
Ist a negativ, so ist die Parabel nach unten geöffnet.

Aufgabe3a.png Aufgabe3b.png Aufgabe3c.png Aufgabe3d.png
y= 3,5 x2 y= 2 x2 y= - 0,1 x2 y= - x2

.




Aufgabe 8

Kreuze die zutreffenden Aussagen zu obigen quadratischen Funktionen an. Es sind jeweils mehrere Antworten richtig.

f(x) = 3,5x2 (!Die Parabel ist nach unten geöffnet.) (Die Parabel ist nach oben geöffnet.) (Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (Der Punkt [2|14] liegt auf dem Graphen.) (Der Punkt [14|2] liegt nicht auf dem Graphen.)

f(x) = -x2 (Die Parabel ist nach unten geöffnet.) (!Die Parabel ist nach oben geöffnet.) (!Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (Der Punkt [2|-2] liegt auf dem Graphen.) (!Der Punkt [2|2] liegt auf dem Graphen.)

f(x) = 2x2 (!Die Parabel ist nach unten geöffnet.) (Die Parabel ist nach oben geöffnet.) (Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (!Der Punkt [0|-2] liegt auf dem Graphen.) (Der Punkt [1|2] liegt oberhalb des Graphen.)

f(x) = -0,1x2 (Die Parabel ist nach unten geöffnet.) (!Die Parabel ist nach oben geöffnet.) (!Die Parabel ist enger als die Normalparabel.) (Die Parabel ist weiter als die Normalparabel.) (!Der Punkt [-1|2] liegt auf dem Graphen.) (Der Punkt [-1|1] liegt oberhalb des Graphen.)

.


Bevor wir zum nächsten Kapitel gehen, hast du hier noch einmal die Möglichkeit alles wichtige zusammengefasst zu wiederholen:


Maehnrot.jpg
Merke:

Die Graphen von Funktionen mit der Funktionsgleichung f(x)=x^2 heißen Parabeln.

Sie sind symmetrisch zur y-Achse. Der Punkt S(0\!\,|\!\,0) heißt Scheitel der Parabel und ist der tiefste Punkt.

Ist a = 1 heißt der dazugehörige Graph Normalparabel.
Ist a > 0, dann ist die Parabel enger (gestreckt) als die Normalparabel.
Für 0 < a < 1 ist die Parabel weiter (gestaucht) als die Normalparabel.
Ist a negativ, so ist die Parabel nach unten geöffnet.


Alles klar? Dann kann's ja weitergehen.

\Rightarrow nächstes Kapitel


\Leftarrow Zurück zur Übersicht