Übungen zu a: Unterschied zwischen den Versionen
K (→Aufgabe 3) |
|||
| Zeile 1: | Zeile 1: | ||
| + | __NOTOC__ | ||
| + | [[Variationen/Quadratische Funktionen2/Einstieg|1. Fußball-WM 2006 - Wasserverbrauch]] [[Variationen/Quadratische Funktionen2/Quadratische Funktionen|2. Quadratische Funktionen und Klippenspringen]] [[Variationen/Quadratische Funktionen2/Übungen zu a|3. Übungen]] [[Variationen/Quadratische Funktionen2/Quadratische Funktionen und der Parameter c|4. Quadratische Funktionen und Volleyball]] [[Variationen/Quadratische Funktionen2/Quadratische Funktionen und der Parameter b|5. Quadratische Funktionen und Fußball]] | ||
| + | |||
| + | |||
<div style="border: 2px solid #00CD66; background-color:#ffffff; padding:7px;"> | <div style="border: 2px solid #00CD66; background-color:#ffffff; padding:7px;"> | ||
===Aufgabe 7=== | ===Aufgabe 7=== | ||
Version vom 20. Februar 2010, 00:59 Uhr
1. Fußball-WM 2006 - Wasserverbrauch 2. Quadratische Funktionen und Klippenspringen 3. Übungen 4. Quadratische Funktionen und Volleyball 5. Quadratische Funktionen und Fußball
Aufgabe 7
Ordne den blaugefärbten Parabeln die jeweils richtige Gleichung zu. Die Normalparabel (schwarz) dient dir als Orientierung.
Hilfe
|
Merke:
Ist a = 1 heißt der dazugehörige Graph Normalparabel. |
.
Aufgabe 8
Kreuze die zutreffenden Aussagen zu obigen quadratischen Funktionen an. Es sind jeweils mehrere Antworten richtig.
f(x) = 3,5x2 (!Die Parabel ist nach unten geöffnet.) (Die Parabel ist nach oben geöffnet.) (Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (Der Punkt [2|14] liegt auf dem Graphen.) (Der Punkt [14|2] liegt nicht auf dem Graphen.)
f(x) = -x2 (Die Parabel ist nach unten geöffnet.) (!Die Parabel ist nach oben geöffnet.) (!Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (Der Punkt [2|-2] liegt auf dem Graphen.) (!Der Punkt [2|2] liegt auf dem Graphen.)
f(x) = 2x2 (!Die Parabel ist nach unten geöffnet.) (Die Parabel ist nach oben geöffnet.) (Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (!Der Punkt [0|-2] liegt auf dem Graphen.) (Der Punkt [1|2] liegt oberhalb des Graphen.)
f(x) = -0,1x2 (Die Parabel ist nach unten geöffnet.) (!Die Parabel ist nach oben geöffnet.) (!Die Parabel ist enger als die Normalparabel.) (Die Parabel ist weiter als die Normalparabel.) (!Der Punkt [-1|2] liegt auf dem Graphen.) (Der Punkt [-1|1] liegt oberhalb des Graphen.)
.
Bevor wir zum nächsten Kapitel gehen, hast du hier noch einmal die Möglichkeit alles wichtige zusammengefasst zu wiederholen:
|
Merke:
Die Graphen von Funktionen mit der Funktionsgleichung Sie sind symmetrisch zur y-Achse. Der Punkt Ist a = 1 heißt der dazugehörige Graph Normalparabel. |
Alles klar? Dann kann's ja weitergehen.
3,5 x2
heißen Parabeln.
heißt Scheitel der Parabel und ist der tiefste Punkt.
nächstes Kapitel
Zurück zur Übersicht
