Quadratische Funktionen und die Scheitelform: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
K
(Quadratische Funktionen und Basketball)
Zeile 5: Zeile 5:
 
==Quadratische Funktionen und Basketball==
 
==Quadratische Funktionen und Basketball==
  
Neben der <big>Normalform</big> gibt es auch die <big>Scheitelform</big>. <br\>
+
Neben der <big>Normalform</big> gibt es auch die <big>Scheitelpunktform</big>. <br\>
 
Mit dieser kannst du in der nächsten Aufgabe experimentieren.
 
Mit dieser kannst du in der nächsten Aufgabe experimentieren.
  
Zeile 12: Zeile 12:
  
 
<ggb_applet width="900" height="500"  version="3.2" ggbBase64="UEsDBBQACAAIAFOmVDwAAAAAAAAAAAAAAAApAAAAMzk0MGY3ZGM0MzA2Y2ExNjc1OTQ1NzdlNzlkOTIzYmJcS29yYi5qcGedl2c03N23x38MRktECxFmogUzkuhEG11IghlhlCDRS/QexoiShEhEdPEgejA8iAxCEGVEjR5d9N47M/P3/Nctb+6Le+8+a6/zYu91zv6cc9Z37UP+TZ4Bruhq6WgBFJQAQHExAPI4oA7Q0tCAaahpwWAwHR0tPSPbJUYGBsZrLKxMbDxcUAgPFzf3DYHbQjf4RPm5uYVlRUTFxKWkpKBCd5XkJBRvS0pJ/LMIBR0dHSMDI+elS5wSvNy8Ev9nIzcCzLRAFpAFouADKJkpQMwU5BYAelEnNcW/DfgPo6AEUVHTgGnp6BkuEqquAJQUIBAlFYiamorqIoq5iANUzNQsvOKqNKzIp2A+TzaJF3GfaPnVypvYUX3bApLWXmF09Fc5OK9xCd4UEhaBSUnLyMrdlVfX0NTSvqeja/jIyBhtYmpmY2tn7+Do5Ozt4+vnHxD4PDwi8uWr11HRH+ITEpOSU1LTsnNy8/ILCj8XVVR+qfqKr66p/dHc0tpGaP/Z0T8wODQ88nt07M/s3PzC4tLyyurO7t7+weHR8cnpP1wUAIjiP+1/5GK+4KKkogJRgf/hoqD0/yeBmYqaV5yGRRUJfurJyifxgpZNLe5TeRMdvyRqm93aq4/+qoDUH8Gdf9D+Tfa/Awv7f5H9F9h/c40BjCCKi8sDMQMIYOadagGV/Q1qa/0n8Pzte4Yl92IoaG62/clQBZ+7DLR4RhKSgLIPrXOkstvmVoshiVFdmJiTu+57itKim7Zy76aMEeufpMX6q1hUrqKpMlIiY/fLnHcHSIE4BTpi0wmaoafh23F6r3TyPZJQzO3IYvHGgVIEZwpWHBV7yYWKUlTwXIV93RyzguVKTu9cb+leHAriJww0c41zM1zDcjOt6ZOBCH0Lfr7WBg7k+Vh9xvSDJM0ptVaIZE0PDWxCxvhkriv9NHvDqosMvPUZIBin6ScKnKVX9tp+0ZFsJoRXzcXuczsMa8yRAchncNhBhYdrH6Yr/Nxl3Oy6Y4DYeJu2k6AoFuY+ZqPn3wSFNtG5r+iZjN4a07Ia953q036D/XGpFNsr3LA1UxBL6SI3r4KYwRKdD5FeqZyDP4g3OElGfD9BmWmHQmSg9L3NwWyezcfRrMBhXnf2I8k2dKN8TY/ZZEgpNquA6dVpKYXkOJN1NxloGakghk3ZTbDIkAFnkcDzWCjOOK2J/Wvumcm+KZqKyKSuG9Dx01LG8aovSm8E376LnOFBHxfgoVoX29gVYH/UD5KBpVlod8OPegkTy5uwmTAFrieGxNW5JBdTBQWhZbdKWAX6IYbwMfZVcvW1b28Q6iR24WNfZS13AybHn6Sq5SB0f/KT/ZIpV/OGGSYe85qFsaUIK+2B7jWLKJmKz0iI/FEPNs9rqWikOGDSP8B+of4aE0kRfFAGs0qhP/LgjBrJ6Zb1D4K0WVj6iuCF/L0/bZuv7wgwZNaVyJ+xEuFDsWa7d+h4MgQqlUua91DwkaS6mAWz7BDt1FS4kX67PLI2HKV9vaOJH6VTxiXu5aRpUdmdkGD0+/ecEw+SrVK8kfKL9Ytbj28glUaXczYLRs5Jj8zHvzzN/uphRTLrHtXOztwjMXf7slekrBO6Apz0BYjw/jxdNptu5Nr0vuLJYCK6k+cNa62K/5TOUvfQU8NQ5QYidvjzY2dZDkZV67h9+joAgTO2t7ceFSV80Pkp9WrpbKjXnENkUlvz+KNhc5t8vdU8G6ofzRrvgHqN1GQXpOcspswNUwg3nmnwhTxu7n69bVTDP8FVkKkLf+7rAPbpytOVNHbst0W/Cg7M+I2ZR4QgCk7IAFeeqDnw4eYev3vtjI9yhJ9UXLcAC/jta/7q4sN+XKN9pJED/9Jr4ig4RIFr7U0khqvyruC1viHnmA5Yd2tFqW0MT02zyFnH1Ktz5yrPwQKYV6WCyKAhWuvOGzT25RZHHyhEA7piibDsnNWc/LP2y5uUFwtplp5T3+I6fZxHWjjNVE1o8CyTNGwuq2yR0R42QEjGrll2yaOjl3Fv3VprZn0UsXXwMcOs0mer8q3po0XE2RD1OIgpO1LHXg7wx73G1UXI7FSbcrqlWW2WZSk3kGpxjg22mgmlKwuz7ASVoP6px4FXiHHXJcS7uidTDkvNrryld8vF4yeCh0x1SxJs/u781iIyryLTWMciX36gPKQ9FYuD6s4UGw35Y7cJdvKeBddvZEfDU34LZ0fTsCE1gX/78oLjPFqLN2Ge+WF2kYSnv8aXtEppLlVfpnE+UBfyq8lpmHLm0n4Ra0uoaPmHXw0PDgwnuG5tQsaQAg4Zc5VM6obK7RO2UL6nmUf6x58vXoab9CdMptXNwEOfvPxJRqUAB83vj+dktshAVtpOyMEm1yBjmt36Awnjm9AtD8+TkVf4046D3YQhWY5ahyHbfr3bU5pvOEb9QTu7HbjeSvojjPKk24KRey3NrJLKhiVVjFH45ax59K/n1xi8cD1UQifRJW0wVLTz6vpS7/UYQ/PfqUJ2TnceU24kRAYx+iJUTUu6uiyiBN/pKHU79tT8wvUSpZ6e4o+NnaC3x3bE3+bnYEQzu7bFfjqPBAVHXhxOt0JzlYWMp4BnXWU2h4FaolD4oyjO2Sq3QQmnjS9XmtRB7YROkvTyH5E2z3jnDbMRueIOpJOQy0TxocuNwFqhFQbUyVV+3AC+T9z45hD9vR2CKy19qyp8BMzOcVhFsH2NYSUDZWadv5u+bPjO20FdBTEhO2FwCCJQRLlDWMQR8XKZRA9TL7aIay48FS7sKQjGLpQqRzf8Ma1NuDodZ9lTSQZe0ci8pru6J3vW/eKU/s5stPSL7JjCOP8rJpn6OwXaQd6K3qIxJrQpoSrc84ZV0OPDiiWSSew83LRQHvVBZxmXX5hyF/YZ0bOIYUNaqq4AG+gnfOZ0sx76yVHs9Zc9NFFbaNeXUuOEQxXEVtHGD4vu0qTB+ZZgkZPsjGpZM/l3+RNMBJo6TuLqEQ6prsG2LxaKhW0bHq1Nd/JMEJFb81iQZagC+pclh7vEkNVZHzzkCboXExm0FTYdkghySPqqTgbeRU9zfudYbO9N3hyQuhDZuBCm02XsR2M75y7xLPOzdv1Vl5vf/aE7ZeqNP4LvDJoJZ9fNVYMNzVkLzy5nTPrVxi6Q2GPNWaHHSSb43DfEC4V+wDrdBwmB+67aW5aO/wSfaZCCB5Xemg8muxXI1oD32Q0wc49TIs8Iq74o/7AQtT5N9i7nxxUPxi0QuSbnvWTALOmM+DBla75st2CUaZ9h+EAT2pP62eMJuDASi3ue/jUnZAXiumW1iLp4Ip1KYsXbjI5HQmc9OSdGFEPFuqPe+TBsr+kPEuc1ktFkOPoj3iaWZYN9FTkkYeej6GqAUIE3Zr6U3vIv8NnDW5tDH4yEVcP5RVbp2Dft9Db9NmOzfkq9sbynN1s/0tjbcL8CXF8NTaIOMDirWp9mygdplQuE0tqe+19BIC04lzrZzjeOYpXerljwaBTIM8JXeKHFxkh+buNyVTeHihrr8m9u79TkwOcXUJ9vpirCrBztlK7pzWBxASlFqPiHN9dLRgwXlh/FuH1c83k0rgmHi8A6VHlSnvSjk4Wrl3sOFF7L4VIv+8hxYhnCT+NMiGsWfIFfbsSVLl4OgG6xEl0aKISuSSWOa0Nu4aCpaOOTKhqCByIRpeRiWuD3ZKsg+b0wY1fuEmgFmTfUFKxpG3p5nK7VSVE+/aNr8dcNV7W/HDjzXJO9JTO3DMPKl9+eGPd/L2wmaiBjPcAHBRGDPQz3KWMLLmrPezJ7gD57MWs2NR2o1md66/buPU7LnIkBX9WoWZ4WXcRfZqmW96Lvf9Yy+r4bCf3V/9PdzqfNqkqcOQvsuEwTuGLhnbtw/4NCLt55/Yc0S6bCOePzu8UbkPSchTSbfQArrv/ylrx6zAO2vylSQzshoei0v7u/WTxeD0hIHLN33mvEBT1TK4+SE2vrF9u3+RFbKmkg2B3DQnPf9FrCTg2BpgAf4BZe3GigOzrRz9KFztQLq93e/8OQO+C+ebe4BzUpFeMUJV6u9DDArhHufUPxShfTkuWah8Gr32J1G5DR2TqZvTcrTWuLsnvS04krImXqK7sOfiQNUN7zhrDLwXfcKOYlLyOmhU5H4g+lVy2pMVPcyMxvcKZ5LM41zeq3VTdPYEW94Kpf36ohRYWvaXzfK8RferE2snDRpNxDRjUykNlRAbgNzvVOlbFwjkV3GDv5T5w4/ck+HPg1GhR0+IAgICt+yJhzTqrSNemz4pDpb9Hf4W0/j92XRt0VjDzS5jVcLWD3lTYdpI5/Fv6JsR4Lq7KM2fe3ihb3ceCp2u97/4X+fLyXO6N7N3Mk/KT/6reqH8kBoXdBAiKkl6WYYv1qMmAK0tDfuaO/d4xqZbS17j+5p8Sf4IEFkdiG5KbTPqJ3n39Y1YHrYJaLpK/Pr4ifqyB6cE2FFhPqsCiZrnCv9zmLoMKVB9Vf/1KRGC2OOzcoB0iUqYx95hM5151sns2JtoQyUb3XdHloFDNc2quN6VqcE54UxPL6ciTGoOkEPgoa+L2UM26UIzrnslTcb/hgZBKz94sVnR8TKTMfHGMm3WtvmIiIfg/DpYfYlkZ4L+B3+fJrPxRm+n3XRDkNuJSzLZfrJEL5hW3JgM/huXwIu7+egd849ORZTJdyDmifiiTVBx37cnxIPM50OjJWDMl/bcu8uqzlVxzosg9y1YZHDNbKnoS7IRdWS5EaDu9vQCWvZAUN/aCc0nZn7mjpoCPttItie/NEhfnqM6zlXlcyHt3l1ZRoYZK/H0U3yvLBxLfTAwGpYs7/I1CLL/uUkyzRoNFwVYXdNE27XYWwSviFzYA52vuzPkZ0sCi9BmveagQtSxq0b0ilPBorWNCwbD5NK/fRrK/zC33buBUPKcg6p1YLxn8YDRH1ejys73/MF47l6K+7b0jta96qpLHJtOgyHmtcxjY0wjW5vBY1gZ1rq3/wabJ3HnMTuSM9H+1QWHb/+PlonxAkPnMe3g3vU4Z+91nLnVtIkV1EnA6NpxT/wvLjpdC5ROTYhbLuEHqp2ZAqF64qEOWt+EBGh+/Fb3HCghlHWuSgJNUlPG1uOuP8O5dbqvaArxC7O+oWMUd4XSb23Af9SS9PT2sgKK/mp7ynL4vTs047SMCcv03UL6Blu7Sedh+c5lqbciAt4MqqpTetRehCUF4SxbvbH7ZzeL1Ge2WQAeLzmkXtQOkvh2RAXIv3lQdtU/t58UDMU6QgxvBhaclscN/wmFQXkU8lGcfq894HMWWpfVBUunAntfe6nSiW5vMn4zfGDGH07c9jPHv389vDlkV3hCfW2QexDJBXyy7gQDMlQz9LLbwOvi/X4vuLHBrOE1kWBxIlGNuymF3P4GJ36QvGViHl6IkCSTHEyNl2745NhIxFAtzm+JEXlrU/+1scX2oZj7rsZCTTg8tkQO+gXtdJs77Wak8i4q/+6bIy6/eUQyAxGvtrRvybTIZbRgxXrVsuOmahevg3HV57a9OLNmYFR9DdWR1EVbyLetZg/Nznk6vdt+uWkqVALXEbBG3ALrqMKUTvlDGLWF2ZCicDSikjuHgl27pYFxi2PuQlehuN2V6pwK/10sic75HYm9Du2wc7SqueezD8vP7xSMFbdHP7fiX7c6b55zxsSKurwb+QmmzAhVPc+nvSm4UMBA6GVAnuTAbdvntSToTVeQUawik+cMooeXijcl+6NLY8+bYESZUe1dMhxBc7pfvyDZ7UmlQWX7nzN6I65yRzzQhXKvA1Qef6k3c5F70jytn1O0l9WeU8tKi62TBRB1aK9HNalvdA5cav+9Bm23Nouyf1JTEG2ioRqueJsIxM7qTKdpU9fnFJ/juw3/zQt6ZoF1eISHJYOTeLZKdYqyaFuwDno7JUPo7X0GrJn4QnAWX2uhKe7jpmpxBn15u1lq1vES4a7nlPSSUiNuNOd0lq5aWllrMLuYrCf9B9QfTfMF972hQcJ1PutUYpBjf8GdgtKd/deyw31tORaee/ODryMr90aVrjom8OWMqWrh15H/DZ7zh63wGhjJWmqY/wLePfCSBEbcl7PSIDc2HfwwWxdS7t+xX4s8W6GNgaCfJdOjVZ6anQLv+5SxxhsxK9j0FZcG1PqkXPf1Yr0RO7p/Q9cWNWRD5h4uoGpOd2ehHKw/xLkHbnijYkcTFzO3MVg5s5/0gGorOOycCjpparF58e34bjootpPfq7VeAMRgtv038E3ey7UGC/uk7S1cs4MqDoit2KJ0lhfzQNNSy9LSPuYtsyDzX1eYlqeLujjNT4lfvVp+hU7I/Gi3BiA3F3+tyI9/hFMYt+spvSV1kywK5/xlfwHuswvP59b6CS1A1THjEeTxeTO2gqE0NckY7dNMdOXyIDrQbBmOK40KS5CX7szqNhpPEtqV+KFcV9eUcZWbubft5NojqQVKlf2rjApzttFc8V4fu6Tjtt+DCqPiaPsI8dMLzf0O9hIyM4HLNUoVlIZWDCwm4szrnyYiiWByPy2eurd8hKREx3kp/czIX+5tc5HndaPHOtY9iPwhYWZraerqfSEF+dFRafR/qpUxt3bFg8O835y9boTm2lUrJBykMPtb9hRUUlTAbg48XiDzIHZdxYFpfLYmMROcRhwm7hR/MhTu5VDgFITrf7TklBgl5u+oJAaU9toNK9Vq019dE3ZUet4pvWMXbzmpC80DKWoLUa7PDjLjKwdY9wOij4Oz1J4GywJNE3eeZZRfKw1Yv13bW0R7JgzDrwLqcLhRUdSQ3I2GXYcJtdHFYVeFAkKywnADBZ5VlDEvapdixfsoIYFdOzx/3KRyMbtSJq4l3HCOTRfwFQSwcI4/3PZwQUAACaFAAAUEsDBBQACAAIAFOmVDwAAAAAAAAAAAAAAAAtAAAAZTcxNWYwN2VjYWViYzk4MTQ1MjVmNmY4NzkwZjM0M2FcU3BpZWxlcjEuanBnnZV5PNR7F8d/Y8YsRlcjYlxjLGMJ6Vpa7CNhhixDJZURlcpyFWKyNGMrTZiyRmRrXNKlknCTfW2zTIylGkYa+0WDsWQe7rP98/zxPM/n/HnO63y/79c5r88RDghHgJ221kRrACQCAKCtAITDgCUAh0JhUFE4DAZDIOBi4lI7xJFIcbTkLgkpjBxWASMnL6+I01FXVNZWkZfXOLhH+xddAwMDrLqh6SE9Ex19A73tJiAEAiGOFJfdsUNWT0leSe9/lrABQMGBPMAQDFIGRFAgMAokbAGwW/8UBf0l4B8CiYAholAYHCGG3Cqo3AmIgMBgEQhYVBQC2cpGbuUBCEpUUknXArqL5AlTviqlF3UvH65y+FmjtHPPPE7fKzAaIbZbRhYtp6qmrrFH02D/gYOHDI0sj1hZ2xCIti7Hjp9wPel26tz5C94XL132CQq+FhJKuR4WExt381b8bXpySmpaesb9zKyCwkfMot+KSx4/r3hR+bKquuaPpuaW1rb2js43vayPff3sgcGhUe7Y1/FvvInJqYXF7/yl5RXB6to2FwgAg/6p/8iF2uISgUDAENg2F0gkdLsABRFV0oVKWpBgnld3KetFwaUO38t/1ohQ0Xeel/YK7BHbjTMYVV3YRvuL7L8Di/6/yP4F9m+uIUAcDNoaHhgFmAMraxpllq1CYKcBFlKLeOKonnkFQZd1epWGIU4AXfIPqWA8xk2keIrNGVzzq1IUeUvL4+OyxVa/t3goVM4684cpXp17FUMGkcSdWaHqUYuLeblzo3VFzKesOrXDC4I7LRedcx2tRexsMjOb6n9uQWb74yThEFDv8zLmDEdtOcSgoGBKJ7KsfCI0VCZDJgitnpZTcZc4yceUmvmHeYidqY8/aKcNaJKHb+KIu6+gLUb0eIoraJePKBPndhM7nEP5z+Klezr2yyzfyOD6Vs23fitQTJ9Sbjv0+QjzWDQegsotPxvGrXMBa3LcTrweZrNK+CeZdgOmv/tLkFj77UzPOcSQWLykcCI7OLDw/C+TqzF3bZystWzrAgSO3P55j4R9G+hS+83YFYa4s24D/ZoxFRgAD4x9ZPdKL8PexVHa2xmidk8meihJre5zwV8HTc7ldCcTFcNKcLlekVqDUwetrmm8QRMaIedRk3isHAXcZtNopswgHTiwcuXpsCLlY0dhTWLHm+xdM2FY0tJySslpXzn3svxL3NO+9/tPDoSeQKMxjOIZX17u7XroHN/1j/4IY5lc5jgzvc+my88oW4JrMduBCYT60ubrEyu7YJzWICan46kWWLX0ma6tfocWi32vowtKM6WO8ejYo5sfuvmr5C/fzv5apmCe9vL848Tmhyd1FanBrjSDxU7DNGbQHr8MbWJXWdi31zJjsHjtCNfiibDZhJ7UalZsAHSm9qfnhpqcle72Mv1u+njt3tEKrvEgZKX75OX+0m9kskMzSl09Krtiy4CmfI45hxIi3pce8OwyqdKvZXUsEnjac8N3FL6mfFxnBwkBRA77B+yCEKgb3vC9lwzfV7lcxRICoQH7e5I47/z8rf10uJHxnfuXGBuaAWLUrmghwFHZ0IwNPUayAiy1nji9eqp63G6nKVAe45363iA57bhO68viBrRhg0LainX51WXT3Ws8sYgH13HNkZw0Im+YLiBkJ19leOJ3FNA1wL8Lro1mbriO+Zs1yqygqqtr/K482yNav6uJESK9nEaRmRkr0mCc6csc036Pea5hrheV7mVzNrBaCASvudZ1g6yknGD6C3DCDYwg3iqHM1jBn068ZV7ky/VZP9c+xKxLGTENnBpvKqlIV4UJclIfRy15iUY44kWlXC1HZqEeUoKqoz3nqNqf3t68MRVlp6sweuzen3is1Qa0d7NxfkqrKAGxbw6XG3JdE24hBPJSBOvskj4tJNJdp+lL2wclTGWtrzzBSLO4QQgs9Q0BGgV0YMFjCOv83AM5MBlITnudPPnr7kEZ457jqemmtL3tJbONKt8e8x0TjV75cHZVqnbqDsZW4sNF0QEb17Nq52hifImYZTkmp8XdbIyYpJ7+Vv8dLjLvMCGxw/QDbpJMJafMG7v4m3MjU231Mp6+9dvM8/8i8YN/B489TbKSAkhW5ygPSO7YZrmiRzyRoX43WIkSEQhPicJjZQUPhcC6a+upl3mPUmtqs453FRqq8JWfTZSVN9fB2CaOhVNZ6Zl+ZI4DI/y8/JuwVAczb2R6O6sGDYxrPRZcu76Mja/D5B6Crml0duHbL/+QqznV3auWjvFpOmmhx2zxo4WebWD008z+3JoqUAYbwwieCjxKk1sMpu7q6HZeBJKog5/dlyJW1i0FJeTT5sjTT81IMqFHqJRoFFX55I8TNJP6hi+oB22bOHtlrbgq95tuRRc+kUDAaHj2XaBj2sPjktFexq3gcHcVx3gbf78o1z5GiNmj7ORIewpvZna0/SbLZUHqGa0irfKll6Hmb0H3Zhx6llwmyd/xWN2IK/Pyp6AVu18XNY4P+Ig3BZMWW81xY92/dIL7Tg+4YuanmysEGe1G/tmoOTo6mTsyB/bTbHjGq7doDyJPrls0LW4Yxn2Utyw+MttGGZoWBDbVTi8HK0ZY1ENoDmmKCkLgNZ1mlrtNXk7fxHkQiyMIC1JzxAt1yajcubYQiR6ryBRqoDZ/urSwV/aUixAAQYSAraDQsjdgw5P7wP/AHvGMP2J5wb0XkhzcchguUTWMXppZqcD+Ur8HMhh+f+d7UEauTchZqpr0cJ+p2XuDH0ZDb7Ths1zCXVBUHPCTcXBpKojHQc8p3xo98UJV7Gg0Dv954E11e3WjeRzFtWE6I4ZblnU7p6LVIIBh8fNBczp9eR+jAXszKaLhEfkIXv3PayNU86bat8uRLKsuBu+Vt5P2TE6qpJ4bvRzMgmydrDyJ4ktb283dVPfpuSQEdix1jnsVnT5RlSAifYdwQDxsLIQys4PSNTPL3MtOCFg6eOaOln3JzKI8WAhElEq0vRQClz7b+U5k+XwmILUrHH/FKdlG58uWXXEIpRFmfDJmhsNU+vdPg9Fq4ZQizoCf95kbZhe3nNp6a61B4+YvxGQEPrJqI1U9kldXKJ65bGxiYG5FSPbw0iypUElX+kVA0m/fvLG3OlfpAz8KKqMuj9ob27k32U2nKKnkE24pCoGGHPianMfgkNcX5Eel4wEpTt4fPoHvsxJ4Dx9mnw/rhr3YfmhhX5IJyTwhwi209N2T+K84FLXrUEYclsz7lLUWM3or9neTfSPDYOn8m5uLkKyFr2cIZxJmA/A1DZiaOWLRZQ7CRJo5dZvqWxBlclRuf/LF4BPy0WBJxBpP+svfneqDx4sbTKm1D7eL8l1Un+i9ERiqXHcC8Uf1BWzPdVMbyQ2T6uCz7kto5MOR2ATQ6rnv5UaCVc+IOnMZ+8sHB70rbyul5mu2XNSUOMqrIkdO923CJzJOqTcXm7GRlnvHmz/7nbUUVTpOhBUdjuEr00x16Bp5EsLBvwFQSwcImMN7WzoKAADKCgAAUEsDBBQACAAIAFOmVDwAAAAAAAAAAAAAAAAuAAAAODM4MjYyMzAxMzVkYWNkYzM1ODQ4YzBhNzk0NGYzOGNcU3BpZWxlciAzLmpwZ52UeTzUWx/Hf2MwZnBdDFmGwZAt2YasMyMhiWay5bYoYWwVJsswjLhcyZ4ldRkhu4QQSbLTLUv2lCzZsk3EGJp51LP98/zxPM/nvL7/nO9yzvuc1/fLHmN/An49ZW5pDoA4AAB0sAD2e8AU4OHmhnBz8UAgECiUB8YH5+fj5eUTFxIWgEtJIKWlJBAIGfmjijJyR1AIhNIx5SMammg0Gqmob6ynZXRUG631owgICoXy8fKJ8fOLackiZLX+Z7FbAEEeIBfQB4PkAA5BEFgQxG4HkAf35AL9FPAPgTjAnFzcEB4ojPcgoPZXgAMEBnNwgrm4ODkPvGEHfoBTkEtIVtOEW5hwBSLnB9e6lfKQB3W86pXI2YENeW0X/0goTPSQmLiEwmFFJWUVtI7uMT19A9MTZuYWJy1P2drZOziec/rtqqubO9HD04t0MyAwKJgcEvV7dMwfsbfjUu+mpWdk3su6n5df8KiwqLiktLrmaW1d/bOGxta29o7Oru6e3sF3Q8Mjo2PjE9Mzs3Of5xcWl5bpXze3vm3vMHaZP7hAABj0T/1HLsEDLg5OTjAn5AcXiCPoR4AgJ5esJreQCQFyxU9YTusWD/x4ysOqV1CU9tkNERf/AZioPHpagf4D7SfZfwcW+X+R/Qvs31wTAB8YdPB5YEEAC+wwlfIiYAeGQj7yaz48/HnP1un4e0Hgo92nVHO/rU7V6h/7yoNO8pkEPJ9s0GlqIzBH84FtkhTsB2oN1yueSwVDrO1tinq/vw3hJ+1JzxuPWkLDKQ2SoBjc0lQGmC4yQm3F0ya9drPVA5zFvCUu3c4/knq6Ie6Yfreztq+7Mc4eepf1JpS2r0LGLhqS2QCVtu8NE4M9iU5L/NP8cPxCYBI+r8SK7C0yJLp5oUuqfa/pXnaEp4ZWYFRPi9HM49Fq8hUzOB50Qb0j4TcpyenCKvmk2rUrulXqgcRdX0yU4iJ/kP1m0Cr/DIFcMcbwn7DucW0Oa03aXW77DJlUx26oAOvhPAyvPosNtcJSGW42YMtteVh104fveLFxDHdYD9Ox1EE9+ia9gGF18glv1A0i3Me4NZ7VUFEK0AXimakMUpc0Hx2SjuIlkpQJbXLVqblbk6Y6IZBbRrZsABqQWFKM6lLI89Iy8eqOtrxtfypVQF/+LmNUm77cOvFluqne9vIZT5Jw69hcxrWCMI12FkflvtC7Q9YM56JnnMazPf67xq9FxNhARGk/JJ9gRla/wzrmGS5KR9/Xac5W262Xve5uGelzfTm3ZBK3AzbCQ0p75MwkT66I2Fu6hAAG9xkzvZJJSIot/lZ2rZpJgc/c6h0/l/C4/K3KYEbC7AMnzC89ZUvadW+cHCZEUZzc8nqoKlg5pnZhqqYwG8FSGVb/YKpTkVfgmtR4sQE1BbOY8QAvaRx0QoShbXFehBFqO340R8rQsh/lA/3wuLDL96VKUqEVssWxlCEtH9USjkzUjJa4ySlQqox92+S8fatfxzshZPRcfVWGtYGqTvRCvCvq+tUYcLKGhWLcpsksGxBhAy5d+YUvgusIxXYnwsrhfFyTmGu5gW+VwCtqZ85WvatQyNjE11fjK7LcU+zUpcgova3KWB3J25U6kmVZaxLznu5E8vvyeEuFpNEKx1THrDvdKyvkI+13CXiISdhM6Kpp64TzHwUTGRJ+QWaE18+1hf4Ki7osQK+kfM9BM9T2RULDI7LWbsD0UQyCeT92vRCbQJkqGusrWdatEy1rDM1yUBodvheBtXX2CDZsc2AJbnTk3OGLMeWYt8B2yeq7b4sb/dIGBw0MmMGBQRCnYHJIlLMQY15/lj7yXKoNknJj/mzLZYRmJ+S6ZkdYg/OvwYMk0mx2uMu4WrENKZ64cH0I1HeQC1rCchkZMafaDa2yX13b6ttq8CfL++ZSW2KxOO8vXrsL2z71/KEzvHcTXiM0E/WBDEVai2P/EEA4ONaxkyYcoIa0o6+V+OW3LoHSf3/sLOdpIpsdBt9GJlEcB6iHjBwoqp+sGmSTH31bZ6o1SNk9MbwXdsiIOdOMy+WIU8oVyKcSJemH75SPhWWLPHxmSRm+oM19VqOrWZfOolf6V8p+p6HPrTTxY4rtyBPRr92q9qFfi/d3kJ0vQn7OE8zV7w9rM5vojx6nlVPKJPGnFhLWgoTZACW6EvE4s+tYfT3LYGRNfTh17uPJ8ngTJXg6bxdCCbzx2CsCpvoeA2PwnqTbRFVMftEt802QO99q0nYCN/kXzxwyi4q6kNk+BcJG7OOqcL9Zay0eqk3pVruV0DsGTj7JjDReBI9QiY+GuqK+QRo9bXJGZZxiFnkgZGef1e1uzLeVb9Mva6biZB5YNG60/+UwDzmm4boxUAcGrUnSGIeqKv3/Tn+7WWaWJaoeu+GPfUpcp83qjO/LMIhus/YvhgLIknsGH5rSYxQn1mWBuZwWDkzB3tl9d0YYaXrVf9b5Kbe1Oj47uxvxSlWq40yVvgxLOmuBJR78cf1VjlIcrn2p3qbqkukQ/C1YYDtTPumSRQjAzG+7JDpIUSikui9us05zm6KE2muq1iyXfQEm7DNGx6OnnKL78t4J6Zn2inbregXcZUlIfa9NePrid3Mv6MO4eahMlshMyimDJ91uKE6kixJ4lhpzv8ZjShBtmNthv5YhrhFStl+E3RmhwvaON6PpR2M/cjHSts0sIwe/6n9S2ycIifuH/4n09V5Jv9wrhojU4gcMDp6B74Pj6boRdM/W3qKo9/nfleU0PkXtJ/mGSuyqziAjbjRBKu7NcV/TDbzq6Y+NFZi+YY4gjhZv70lX63wH29CPJulmluIO16XdXLTbvhwqONYPAW94z3AEPzCxlmO5sUae4GjaJCPT6CvLFqYM6W/LtfRLNVdLKQb0N8MVtZPJH89Z7T2ITeRFHbVjqbShiuQdixnnZ1kloWVjS42FKd5KDRl6Rl8CPcadYi922Hwi67d0AK6sAfz5ovin44K0vox2ckRSmlIgzOLlx75+xycUDbrxy9tN0MLXiNwP50/UjSqdE3UkxNN2IvgwzZ3PqEks4aYhn5V9Uzdols9AXqO9uGt8di8bWIv6k+kqnVWJYejM3qHyMFKtLppCr5T4JFr2sAG7XptB6vhuLCarzwtg9sZ5yEbIRArIxAUAcIIZEJy5yjv93JsmMBEcozd8Q61Q9KuGmLokEWBO/4Fcl9hkA5EYeFT7Je09t3dI1CmoP4o3e52WLDzGob0et0WbkPCmMU6gv+i5BCaGTr9IIyZX1J4ZysGk126QXpGCLVrjdxavDlWOWaN9NFzwGsVhLfK042OrOOm4xWplC7x9DA9KJsnUWZ6CY5BKGcQOR/wS89pw5wPVrGtuMaK+8M2n6QiRt1ggdHQ0DQ9BbcwYMpqlF6uWPVUuPnr2Sw2HlLlNv8kc5dmXNwFDBBySPf43UEsHCMnlP3cHCgAAngoAAFBLAwQUAAgACABTplQ8AAAAAAAAAAAAAAAALgAAADYxZmMwZmJlMTNiYzUyMjJjNWU1OGIwYmNmODIzM2E5XFNwaWVsZXIgMi5qcGed1Xk41PseB/Df7DOWGEuYmJEhclC2UCTF2MpWOJaTtRxcSVG2kS1bhjMp2Y4lW1nOZMuSJQzDSNaMNYxkyTijLJP16jx3+ef+ce99f5/vX5/P832+r+fzfJ/vwejBDMBvQjAmACAwAIAOF3AwAVwCkHA4Ag5DIhAIFArJxSPEy8PNzSMmIMgnJIHBYSUw4uKS0kqyklIKeHFxOY2TCqeV1dTUcLJaOpoq2kqqaio/DgGhUCgebh5RXl5RlePix1X+5xy8BdBIIBdQgoCkADAaBEGDDqgA7vCeMNBfAf4REBgChcERSBQX92FDDT8ABkEgYCgEBoNCD6vEwzoARcMEjivrwQUtXRBSfkIqEeQ8JP5iRauw1QBbWtX1TiSK66iIqBhG5oSs3El5NfUzGppaZy/pGxAMjYxNrl6ztrH92c7ezf3GTY9fPb3u+gfcux8YFBwV/TAmNi4+4XHKk6epz9LSM57nFxQWFb94WVJZVV3zurauvqGtndrRSevqpg8ODX8YYYyOjc8y5z7Nf15YXFpe+/ptfWNzi/N9+4cLBEBA/8x/dKEPXWAoFAJF/HCBwPd/NKChsOPKcAE9S4SLn6CUSgRS6CI5r6IVhVe1Ygu73hngOiqtNiuz9oP2l+y/g0X+X7J/wf7tGgd4IKDD4UHQgC6w7ov21jixwcol5yeoRlXPVPyZssSyS8U0TZHaGujv6ufFHyP3c+yL5365ON3ewNkffurDoqiMDLHOGQO3bHTSBLOykS6TGCfeR75Clw+AMYZfH4+MfiXhjohO1ReW08nrorUJDeZETFMZkVfMJVVC1qdmNThRVaGfJr/HsGhfJHg5XvOjVhAqXrS9APhcrGyHCZu2k9+3vBcVhSxt8L1hWp4V06HKTVlUrIOWa8aZ1ZbTNvh9cGfJLujx2D6mpB1T9vK+/HtDm1tI2X3wtTDhCQ7NbJ/BvlnlLHLX3EM+d8OngLIMC7RdYTFR5TU7e6CuMwy/Y9HQvTERYG65OGfLACDKGAhZgA43GJ3NGxpVolTKpjBLpxSr9VgLQaz+hZ5UkS4AW9eKH0322hZwSmg+VslQ8ifara5nprnLlRNB+k8gJHo73nPFTPNzSagJ+5da6ikk7XwGu5d4q8hbbCDCTk+8yFDUGc7nimgCfAJxndtOSf6+tT+rGiq4K3ZU5WSI4IvrtGff7IhHPFxzYKrtQ4bKRtqQn4dP2UXftDAhlJKo4QQzI8CDMZSTFarBVPSY3YpvZkB9eIelO/y8b5flMRoq2UTkuiRmcR/PGRmibYdlluTXlLOKfBaGprZO9Xalqkb85heVTRD5cgGbwq5ibuYz+/gl+Bxjpt+nY0yDci82vui2QulESCabbDZ8N525H1s4oh34bOB65o3BYUeVkvlCKGuCEa6npb1GC95+Ha5pLrGrPrjr46K0mTptAaQpQRPp5UlLWc5zCADzNcQuTCpUNB6f8VHCUD/ImKuwgGSmcvsCrxg+m6CpjfVeOusmFyB/QZ6AxEsmAN9LmRqJjcJzBwAP8TU0BIe2X7lhl/fZ+TZG58tvbz0ks4gfxyiiFF/OFHtHjz3VeHYz7UoZ4z74TKVlWvd4R/qDN/3u/guJtnEWsEzTnsyTIyGm6T6fJaTj6a92DdU3WtrMhX4JzH97b6shKv2PGXJ5Ucot06etPEQ6OWWSQdvYSH5LUrqiO1vYOOiuzqI+A3Crn+QOgP67nH5EsaWBEGimpbqsroq9ci64+9ytvly95JHmYMrzFs9jhBSjfoqejGv2z100nMpLhC4bN9IckItC8zyWPyUTB1n2Xv1d5HKUUf+Kf9e1uHJnoycPGnLv/unE3bZ/baA7keU8uo3ZoQ8GNNREMlW4TDEN5P5IEO59uIKlQejeWiyz+bovD+fOEsPzZEiQoJs2v+vVpWXDIkQw0MqZnvvE2Ajor14q2BGOevV76gW37Ms86KS8MJe+O960xefhXDul7cs9s02K7tZHXpPhyNOgUdVkL04YfewPig9rwG7cThhMsZGOiPizlzgtdJJHuV20Teqh5SICHK79ZQ6RbNuGFfM21fIr9eIaaK3+JuDvqVPRH5Lj5nTisbF0VspwxlIjseSLPS1xg5sULOgbRpmvadF8aBuePyG+0Hz3Y4N5tC5feaNfufmZ/LMHgMfo3zydbdrfOWg6WTSK57wN6ALK2ROzvy8kBaC1e2SaSSgqA3Cu32d6vNzQQXw6wuhsgSx+PJJiQMR8KGfWJRnNwy+2pnPNfHtv5JY9ybXtSqdPmFUlvKcjWaznFhUdmIfWkFfgRpHNpzd3DGNFZG/2RCWN0S0QmaGnBwtGzuMXU9foFWmrsFYFFNTwG5l2RwRHImY6yYbC47rXCB82b6En3lEPgPvznQ/WVsLUN0hAkEcnLvYnJkt2x9wsmter90h/fmYcTYbvpfjTXcOw8/fYyfGU3WPMEKLZh3R7WW4/9IwxlvAJz95FImqI9U66oT4cd6B+LSwpHBTTUmtNCxWzXZ/UxdkDWyE/TRAJdO4eYxuHoH7jYy+7bhw+gq+4cQ0zDazAkDrscqZDWyJRePgAsBZOYeOZXEGX2jAFs0Y9nl/PuWlpKXswZPFr2MgmisPASs0edsFk2FVg3DHP0GyfiqWK84fwy0E++4Zf7RCh1g0ag9P/Nq+P4GTOa2I5Vg+4tiubpZK8+6CcuXeJ5ICCj08XSBOikXwVQHIepdp/Z4J49UpNc63PyJaywkCOtTNyjxdwfOEeL0PKJ1sPRPCUqSB19CSWvSLt8JGyqQQUBvyOOgNoSeeYABwG8yiJL+b8ca9xYvyvMzF+0pLgNxBgBsJ6A+zYvtoV4zyjBD6yOAsvhVwvs0g/unu7Kx9A6TZlh2/0OX41zPK2WMYdbZabbiYf4Ug/MRBvNTKadXpyTnBI0kPCWFN4vThqF18cqHHx0ZWhfHHAIz0G67Hau4dw6QBCGWstphhf6pfv/PzPyLTbmjSZe7XLBfvq6w/aIx/MOnDuJn+PbT8AchO+6o5bvVUciXgB+XbWFISlW8fuR3sPNx/9WLjVjuPrgR/pMYhOXJczwX34FVJZYrtp4WVP7CUNBqVuKVdb/WE0WYbE48mtpdUW8OvkvKVs3NBgj3FFzOBUsPQlsfMFG7KTn0YKhVOYil6HfyVsleJfxh7Xd5fPT10Bth/DgEAcS7ikTzauuveE0W96sPq6JL2ttHp5vYXcUeUN9WT2IypWtTrj2xX2VPEmqS75fUhQjpe+MeS2lqhs0bk5nVLJ0cBa5vSjE8OuFZ7SWeE3xm2Q/Lfhc50Aq1t7Q309J6JRzG3GnK+clKsyaXRpyjG6x4SzJ+QPqR3OAA7G/g5QSwcIHWjapswJAABZCgAAUEsDBBQACAAIAFOmVDwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vhtj9w0EP5Mf4UVpKoFNpf3ZNXdVlwFonC0SFuKhCqQ40w27uVlsZ1e9n4Yf4A/xthJ9rW9XumJFtr9krU9mXlmnrE9k9mDrirJSxCSN/Xccm3HIlCzJuP1cm61Kp8k1oP7t2ZLaJaQCkryRlRUzS3f9iw93/L7tz6byaK5ILQ0Is84XMytnJYSLCJXAmgmCwC1N0/bjpecivWT9AUwJbcLvZJH9apFK0q0OMeq7IzLcXiiDeZNrQiR/BIQtKfnZicGywxaVvKM01rbM9hQiJALnqlCy0aBRQrgywL1RZHTq2NNI7LFWiqoSPcriGZueW6og7HuR34/koyWaDF0zNLuyKiBlwtQCkMnCe1g69RS8Gxv8EieNuV2atXwWj2kK9UKE3d/mFqotTaAtoQG/HW9LGGY8zAsBbDztOkWfRT8XvXT9cq8YgCly4dN2Qgi8IUwRIHhmfZPI6ORbqQcI+MYiUGHVrpZd6eekTDPtH8aqZLXPbTBc3f02nVGM1wSPaHDiOmycb6kKZRzyyJtzdXZOFCcnQ+uuv0Lj9sqxTzdzYKNTvemdM5ODvJndg6ihrJPkhq5bZtWkpe0HG0ZIBkwXuGwXxhCQjVdPyOAfjaDpYAReJ/lfcDM6l4iHkzPTkYQGoNErEzhdkV/lPZF7yZVNMjOI6ldLckz3KylRTKq9LLeFCVUgDtGmeRAqMttkE55mbmW2VQczda0QhF/Gjh5nLHAdyJG3SgOp0EYxxBPs6nnp+nzHxqR2i9Wyx42r08pO1+Kpq2zo+BIRYX6SeczqU28TQ50uHHsaeTs/DCD17hmJ4lzMH3ZH00HmaYKJLQGKc12ULuJbw6kxpwt4ykyuLsDDNdfk/h4DK0KumuUrkHsMWXU/dhk+/zRGoNryMGzZKWd0Zm2AsiGw3VESVao0mz2DSDMvZ6maxDmvRfCXDuKp7u/eGRsuv/7xNgRY/57YWyC93RgSPJstLf7Cz56kjBUIDjb+ND9Lg1JaLkd7Lubu/31rm/vo9d57ulgD75r6NfzfbhGJF5HKFhxrM8mpgqpaDcgIzSVTdkqWDC8W+qzhpkojQCHosd3jGynL33PVC445+s/Oe9gW4bgHcIv8ZKje05dKzH+HYLWxwR5tvdh8hNemx73FfTE8X+QHnpIzsS1g1ews1+kvZke5x+Q4944OX4Sj+REHyY5HTZbUjdyY2h/aUWe0qLGnq5bbYd3urtkTij5gtzpyITgsXf3tzuYeXfJl0RvMXJyRHXe1qbmtI5U38Dd8bYb9OrL40meS1Dm8kt6vibxVSlyDfBXR/kpdModQnz7j7ZR977jCExyKKQiWUsyAZycUnkOKqVliWu8Irc/d517TwXlNTJqk+9B52lBFZGAgGqCLSrg04jpSuArogVewAVw7DMQ9Dl2GwiCFxXBTgMmRhKbClYogt2ybcbf8hrdzVrBCvINryVVl0bPghUc0uElActyR7e2T6q//lyWHFtMopkelCPf2DsL2kpEw1Ev4jxFj7Q/GmPvFGapusQIKLsfP24UjkC/IbE9bHN8D01U5Az/X2LDDGUP9hSWvNa2sWXKcF0A+oImFiuO8Rd2H1zrODsVMmDt03GD1cqbEu6oWjEfJyQejfn2O4jp0XXrO/afh3WbSdjA9qKhWvN2y7O3KTSjw0ITYjfMnRgYhZRNEzcIvTCP8iSeOrkf+PT5EF/3ndsDxw6Sfsf5trvX2jnR/6XavLGGID7kKfETL/J8x/XDjLKM+WESJMyh8TQIcj9hI0/Ef/fGOwoP+rWBtOATaVeSlhySFrk5c/IUXD9loed5LIQwSZ2U5Ynn+3S6Ic17V9IcO94nbdhqzmFj5310rJ3sfhYzn4KHz9X3/wZQSwcIovhrdnsFAADgFgAAUEsBAhQAFAAIAAgAU6ZUPOP9z2cEFAAAmhQAACkAAAAAAAAAAAAAAAAAAAAAADM5NDBmN2RjNDMwNmNhMTY3NTk0NTc3ZTc5ZDkyM2JiXEtvcmIuanBnUEsBAhQAFAAIAAgAU6ZUPJjDe1s6CgAAygoAAC0AAAAAAAAAAAAAAAAAWxQAAGU3MTVmMDdlY2FlYmM5ODE0NTI1ZjZmODc5MGYzNDNhXFNwaWVsZXIxLmpwZ1BLAQIUABQACAAIAFOmVDzJ5T93BwoAAJ4KAAAuAAAAAAAAAAAAAAAAAPAeAAA4MzgyNjIzMDEzNWRhY2RjMzU4NDhjMGE3OTQ0ZjM4Y1xTcGllbGVyIDMuanBnUEsBAhQAFAAIAAgAU6ZUPB1o2qbMCQAAWQoAAC4AAAAAAAAAAAAAAAAAUykAADYxZmMwZmJlMTNiYzUyMjJjNWU1OGIwYmNmODIzM2E5XFNwaWVsZXIgMi5qcGdQSwECFAAUAAgACABTplQ8ovhrdnsFAADgFgAADAAAAAAAAAAAAAAAAAB7MwAAZ2VvZ2VicmEueG1sUEsFBgAAAAAFAAUApAEAADA5AAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" />
 
<ggb_applet width="900" height="500"  version="3.2" ggbBase64="UEsDBBQACAAIAFOmVDwAAAAAAAAAAAAAAAApAAAAMzk0MGY3ZGM0MzA2Y2ExNjc1OTQ1NzdlNzlkOTIzYmJcS29yYi5qcGedl2c03N23x38MRktECxFmogUzkuhEG11IghlhlCDRS/QexoiShEhEdPEgejA8iAxCEGVEjR5d9N47M/P3/Nctb+6Le+8+a6/zYu91zv6cc9Z37UP+TZ4Bruhq6WgBFJQAQHExAPI4oA7Q0tCAaahpwWAwHR0tPSPbJUYGBsZrLKxMbDxcUAgPFzf3DYHbQjf4RPm5uYVlRUTFxKWkpKBCd5XkJBRvS0pJ/LMIBR0dHSMDI+elS5wSvNy8Ev9nIzcCzLRAFpAFouADKJkpQMwU5BYAelEnNcW/DfgPo6AEUVHTgGnp6BkuEqquAJQUIBAlFYiamorqIoq5iANUzNQsvOKqNKzIp2A+TzaJF3GfaPnVypvYUX3bApLWXmF09Fc5OK9xCd4UEhaBSUnLyMrdlVfX0NTSvqeja/jIyBhtYmpmY2tn7+Do5Ozt4+vnHxD4PDwi8uWr11HRH+ITEpOSU1LTsnNy8/ILCj8XVVR+qfqKr66p/dHc0tpGaP/Z0T8wODQ88nt07M/s3PzC4tLyyurO7t7+weHR8cnpP1wUAIjiP+1/5GK+4KKkogJRgf/hoqD0/yeBmYqaV5yGRRUJfurJyifxgpZNLe5TeRMdvyRqm93aq4/+qoDUH8Gdf9D+Tfa/Awv7f5H9F9h/c40BjCCKi8sDMQMIYOadagGV/Q1qa/0n8Pzte4Yl92IoaG62/clQBZ+7DLR4RhKSgLIPrXOkstvmVoshiVFdmJiTu+57itKim7Zy76aMEeufpMX6q1hUrqKpMlIiY/fLnHcHSIE4BTpi0wmaoafh23F6r3TyPZJQzO3IYvHGgVIEZwpWHBV7yYWKUlTwXIV93RyzguVKTu9cb+leHAriJww0c41zM1zDcjOt6ZOBCH0Lfr7WBg7k+Vh9xvSDJM0ptVaIZE0PDWxCxvhkriv9NHvDqosMvPUZIBin6ScKnKVX9tp+0ZFsJoRXzcXuczsMa8yRAchncNhBhYdrH6Yr/Nxl3Oy6Y4DYeJu2k6AoFuY+ZqPn3wSFNtG5r+iZjN4a07Ia953q036D/XGpFNsr3LA1UxBL6SI3r4KYwRKdD5FeqZyDP4g3OElGfD9BmWmHQmSg9L3NwWyezcfRrMBhXnf2I8k2dKN8TY/ZZEgpNquA6dVpKYXkOJN1NxloGakghk3ZTbDIkAFnkcDzWCjOOK2J/Wvumcm+KZqKyKSuG9Dx01LG8aovSm8E376LnOFBHxfgoVoX29gVYH/UD5KBpVlod8OPegkTy5uwmTAFrieGxNW5JBdTBQWhZbdKWAX6IYbwMfZVcvW1b28Q6iR24WNfZS13AybHn6Sq5SB0f/KT/ZIpV/OGGSYe85qFsaUIK+2B7jWLKJmKz0iI/FEPNs9rqWikOGDSP8B+of4aE0kRfFAGs0qhP/LgjBrJ6Zb1D4K0WVj6iuCF/L0/bZuv7wgwZNaVyJ+xEuFDsWa7d+h4MgQqlUua91DwkaS6mAWz7BDt1FS4kX67PLI2HKV9vaOJH6VTxiXu5aRpUdmdkGD0+/ecEw+SrVK8kfKL9Ytbj28glUaXczYLRs5Jj8zHvzzN/uphRTLrHtXOztwjMXf7slekrBO6Apz0BYjw/jxdNptu5Nr0vuLJYCK6k+cNa62K/5TOUvfQU8NQ5QYidvjzY2dZDkZV67h9+joAgTO2t7ceFSV80Pkp9WrpbKjXnENkUlvz+KNhc5t8vdU8G6ofzRrvgHqN1GQXpOcspswNUwg3nmnwhTxu7n69bVTDP8FVkKkLf+7rAPbpytOVNHbst0W/Cg7M+I2ZR4QgCk7IAFeeqDnw4eYev3vtjI9yhJ9UXLcAC/jta/7q4sN+XKN9pJED/9Jr4ig4RIFr7U0khqvyruC1viHnmA5Yd2tFqW0MT02zyFnH1Ktz5yrPwQKYV6WCyKAhWuvOGzT25RZHHyhEA7piibDsnNWc/LP2y5uUFwtplp5T3+I6fZxHWjjNVE1o8CyTNGwuq2yR0R42QEjGrll2yaOjl3Fv3VprZn0UsXXwMcOs0mer8q3po0XE2RD1OIgpO1LHXg7wx73G1UXI7FSbcrqlWW2WZSk3kGpxjg22mgmlKwuz7ASVoP6px4FXiHHXJcS7uidTDkvNrryld8vF4yeCh0x1SxJs/u781iIyryLTWMciX36gPKQ9FYuD6s4UGw35Y7cJdvKeBddvZEfDU34LZ0fTsCE1gX/78oLjPFqLN2Ge+WF2kYSnv8aXtEppLlVfpnE+UBfyq8lpmHLm0n4Ra0uoaPmHXw0PDgwnuG5tQsaQAg4Zc5VM6obK7RO2UL6nmUf6x58vXoab9CdMptXNwEOfvPxJRqUAB83vj+dktshAVtpOyMEm1yBjmt36Awnjm9AtD8+TkVf4046D3YQhWY5ahyHbfr3bU5pvOEb9QTu7HbjeSvojjPKk24KRey3NrJLKhiVVjFH45ax59K/n1xi8cD1UQifRJW0wVLTz6vpS7/UYQ/PfqUJ2TnceU24kRAYx+iJUTUu6uiyiBN/pKHU79tT8wvUSpZ6e4o+NnaC3x3bE3+bnYEQzu7bFfjqPBAVHXhxOt0JzlYWMp4BnXWU2h4FaolD4oyjO2Sq3QQmnjS9XmtRB7YROkvTyH5E2z3jnDbMRueIOpJOQy0TxocuNwFqhFQbUyVV+3AC+T9z45hD9vR2CKy19qyp8BMzOcVhFsH2NYSUDZWadv5u+bPjO20FdBTEhO2FwCCJQRLlDWMQR8XKZRA9TL7aIay48FS7sKQjGLpQqRzf8Ma1NuDodZ9lTSQZe0ci8pru6J3vW/eKU/s5stPSL7JjCOP8rJpn6OwXaQd6K3qIxJrQpoSrc84ZV0OPDiiWSSew83LRQHvVBZxmXX5hyF/YZ0bOIYUNaqq4AG+gnfOZ0sx76yVHs9Zc9NFFbaNeXUuOEQxXEVtHGD4vu0qTB+ZZgkZPsjGpZM/l3+RNMBJo6TuLqEQ6prsG2LxaKhW0bHq1Nd/JMEJFb81iQZagC+pclh7vEkNVZHzzkCboXExm0FTYdkghySPqqTgbeRU9zfudYbO9N3hyQuhDZuBCm02XsR2M75y7xLPOzdv1Vl5vf/aE7ZeqNP4LvDJoJZ9fNVYMNzVkLzy5nTPrVxi6Q2GPNWaHHSSb43DfEC4V+wDrdBwmB+67aW5aO/wSfaZCCB5Xemg8muxXI1oD32Q0wc49TIs8Iq74o/7AQtT5N9i7nxxUPxi0QuSbnvWTALOmM+DBla75st2CUaZ9h+EAT2pP62eMJuDASi3ue/jUnZAXiumW1iLp4Ip1KYsXbjI5HQmc9OSdGFEPFuqPe+TBsr+kPEuc1ktFkOPoj3iaWZYN9FTkkYeej6GqAUIE3Zr6U3vIv8NnDW5tDH4yEVcP5RVbp2Dft9Db9NmOzfkq9sbynN1s/0tjbcL8CXF8NTaIOMDirWp9mygdplQuE0tqe+19BIC04lzrZzjeOYpXerljwaBTIM8JXeKHFxkh+buNyVTeHihrr8m9u79TkwOcXUJ9vpirCrBztlK7pzWBxASlFqPiHN9dLRgwXlh/FuH1c83k0rgmHi8A6VHlSnvSjk4Wrl3sOFF7L4VIv+8hxYhnCT+NMiGsWfIFfbsSVLl4OgG6xEl0aKISuSSWOa0Nu4aCpaOOTKhqCByIRpeRiWuD3ZKsg+b0wY1fuEmgFmTfUFKxpG3p5nK7VSVE+/aNr8dcNV7W/HDjzXJO9JTO3DMPKl9+eGPd/L2wmaiBjPcAHBRGDPQz3KWMLLmrPezJ7gD57MWs2NR2o1md66/buPU7LnIkBX9WoWZ4WXcRfZqmW96Lvf9Yy+r4bCf3V/9PdzqfNqkqcOQvsuEwTuGLhnbtw/4NCLt55/Yc0S6bCOePzu8UbkPSchTSbfQArrv/ylrx6zAO2vylSQzshoei0v7u/WTxeD0hIHLN33mvEBT1TK4+SE2vrF9u3+RFbKmkg2B3DQnPf9FrCTg2BpgAf4BZe3GigOzrRz9KFztQLq93e/8OQO+C+ebe4BzUpFeMUJV6u9DDArhHufUPxShfTkuWah8Gr32J1G5DR2TqZvTcrTWuLsnvS04krImXqK7sOfiQNUN7zhrDLwXfcKOYlLyOmhU5H4g+lVy2pMVPcyMxvcKZ5LM41zeq3VTdPYEW94Kpf36ohRYWvaXzfK8RferE2snDRpNxDRjUykNlRAbgNzvVOlbFwjkV3GDv5T5w4/ck+HPg1GhR0+IAgICt+yJhzTqrSNemz4pDpb9Hf4W0/j92XRt0VjDzS5jVcLWD3lTYdpI5/Fv6JsR4Lq7KM2fe3ihb3ceCp2u97/4X+fLyXO6N7N3Mk/KT/6reqH8kBoXdBAiKkl6WYYv1qMmAK0tDfuaO/d4xqZbS17j+5p8Sf4IEFkdiG5KbTPqJ3n39Y1YHrYJaLpK/Pr4ifqyB6cE2FFhPqsCiZrnCv9zmLoMKVB9Vf/1KRGC2OOzcoB0iUqYx95hM5151sns2JtoQyUb3XdHloFDNc2quN6VqcE54UxPL6ciTGoOkEPgoa+L2UM26UIzrnslTcb/hgZBKz94sVnR8TKTMfHGMm3WtvmIiIfg/DpYfYlkZ4L+B3+fJrPxRm+n3XRDkNuJSzLZfrJEL5hW3JgM/huXwIu7+egd849ORZTJdyDmifiiTVBx37cnxIPM50OjJWDMl/bcu8uqzlVxzosg9y1YZHDNbKnoS7IRdWS5EaDu9vQCWvZAUN/aCc0nZn7mjpoCPttItie/NEhfnqM6zlXlcyHt3l1ZRoYZK/H0U3yvLBxLfTAwGpYs7/I1CLL/uUkyzRoNFwVYXdNE27XYWwSviFzYA52vuzPkZ0sCi9BmveagQtSxq0b0ilPBorWNCwbD5NK/fRrK/zC33buBUPKcg6p1YLxn8YDRH1ejys73/MF47l6K+7b0jta96qpLHJtOgyHmtcxjY0wjW5vBY1gZ1rq3/wabJ3HnMTuSM9H+1QWHb/+PlonxAkPnMe3g3vU4Z+91nLnVtIkV1EnA6NpxT/wvLjpdC5ROTYhbLuEHqp2ZAqF64qEOWt+EBGh+/Fb3HCghlHWuSgJNUlPG1uOuP8O5dbqvaArxC7O+oWMUd4XSb23Af9SS9PT2sgKK/mp7ynL4vTs047SMCcv03UL6Blu7Sedh+c5lqbciAt4MqqpTetRehCUF4SxbvbH7ZzeL1Ge2WQAeLzmkXtQOkvh2RAXIv3lQdtU/t58UDMU6QgxvBhaclscN/wmFQXkU8lGcfq894HMWWpfVBUunAntfe6nSiW5vMn4zfGDGH07c9jPHv389vDlkV3hCfW2QexDJBXyy7gQDMlQz9LLbwOvi/X4vuLHBrOE1kWBxIlGNuymF3P4GJ36QvGViHl6IkCSTHEyNl2745NhIxFAtzm+JEXlrU/+1scX2oZj7rsZCTTg8tkQO+gXtdJs77Wak8i4q/+6bIy6/eUQyAxGvtrRvybTIZbRgxXrVsuOmahevg3HV57a9OLNmYFR9DdWR1EVbyLetZg/Nznk6vdt+uWkqVALXEbBG3ALrqMKUTvlDGLWF2ZCicDSikjuHgl27pYFxi2PuQlehuN2V6pwK/10sic75HYm9Du2wc7SqueezD8vP7xSMFbdHP7fiX7c6b55zxsSKurwb+QmmzAhVPc+nvSm4UMBA6GVAnuTAbdvntSToTVeQUawik+cMooeXijcl+6NLY8+bYESZUe1dMhxBc7pfvyDZ7UmlQWX7nzN6I65yRzzQhXKvA1Qef6k3c5F70jytn1O0l9WeU8tKi62TBRB1aK9HNalvdA5cav+9Bm23Nouyf1JTEG2ioRqueJsIxM7qTKdpU9fnFJ/juw3/zQt6ZoF1eISHJYOTeLZKdYqyaFuwDno7JUPo7X0GrJn4QnAWX2uhKe7jpmpxBn15u1lq1vES4a7nlPSSUiNuNOd0lq5aWllrMLuYrCf9B9QfTfMF972hQcJ1PutUYpBjf8GdgtKd/deyw31tORaee/ODryMr90aVrjom8OWMqWrh15H/DZ7zh63wGhjJWmqY/wLePfCSBEbcl7PSIDc2HfwwWxdS7t+xX4s8W6GNgaCfJdOjVZ6anQLv+5SxxhsxK9j0FZcG1PqkXPf1Yr0RO7p/Q9cWNWRD5h4uoGpOd2ehHKw/xLkHbnijYkcTFzO3MVg5s5/0gGorOOycCjpparF58e34bjootpPfq7VeAMRgtv038E3ey7UGC/uk7S1cs4MqDoit2KJ0lhfzQNNSy9LSPuYtsyDzX1eYlqeLujjNT4lfvVp+hU7I/Gi3BiA3F3+tyI9/hFMYt+spvSV1kywK5/xlfwHuswvP59b6CS1A1THjEeTxeTO2gqE0NckY7dNMdOXyIDrQbBmOK40KS5CX7szqNhpPEtqV+KFcV9eUcZWbubft5NojqQVKlf2rjApzttFc8V4fu6Tjtt+DCqPiaPsI8dMLzf0O9hIyM4HLNUoVlIZWDCwm4szrnyYiiWByPy2eurd8hKREx3kp/czIX+5tc5HndaPHOtY9iPwhYWZraerqfSEF+dFRafR/qpUxt3bFg8O835y9boTm2lUrJBykMPtb9hRUUlTAbg48XiDzIHZdxYFpfLYmMROcRhwm7hR/MhTu5VDgFITrf7TklBgl5u+oJAaU9toNK9Vq019dE3ZUet4pvWMXbzmpC80DKWoLUa7PDjLjKwdY9wOij4Oz1J4GywJNE3eeZZRfKw1Yv13bW0R7JgzDrwLqcLhRUdSQ3I2GXYcJtdHFYVeFAkKywnADBZ5VlDEvapdixfsoIYFdOzx/3KRyMbtSJq4l3HCOTRfwFQSwcI4/3PZwQUAACaFAAAUEsDBBQACAAIAFOmVDwAAAAAAAAAAAAAAAAtAAAAZTcxNWYwN2VjYWViYzk4MTQ1MjVmNmY4NzkwZjM0M2FcU3BpZWxlcjEuanBnnZV5PNR7F8d/Y8YsRlcjYlxjLGMJ6Vpa7CNhhixDJZURlcpyFWKyNGMrTZiyRmRrXNKlknCTfW2zTIylGkYa+0WDsWQe7rP98/zxPM/n/HnO63y/79c5r88RDghHgJ221kRrACQCAKCtAITDgCUAh0JhUFE4DAZDIOBi4lI7xJFIcbTkLgkpjBxWASMnL6+I01FXVNZWkZfXOLhH+xddAwMDrLqh6SE9Ex19A73tJiAEAiGOFJfdsUNWT0leSe9/lrABQMGBPMAQDFIGRFAgMAokbAGwW/8UBf0l4B8CiYAholAYHCGG3Cqo3AmIgMBgEQhYVBQC2cpGbuUBCEpUUknXArqL5AlTviqlF3UvH65y+FmjtHPPPE7fKzAaIbZbRhYtp6qmrrFH02D/gYOHDI0sj1hZ2xCIti7Hjp9wPel26tz5C94XL132CQq+FhJKuR4WExt381b8bXpySmpaesb9zKyCwkfMot+KSx4/r3hR+bKquuaPpuaW1rb2js43vayPff3sgcGhUe7Y1/FvvInJqYXF7/yl5RXB6to2FwgAg/6p/8iF2uISgUDAENg2F0gkdLsABRFV0oVKWpBgnld3KetFwaUO38t/1ohQ0Xeel/YK7BHbjTMYVV3YRvuL7L8Di/6/yP4F9m+uIUAcDNoaHhgFmAMraxpllq1CYKcBFlKLeOKonnkFQZd1epWGIU4AXfIPqWA8xk2keIrNGVzzq1IUeUvL4+OyxVa/t3goVM4684cpXp17FUMGkcSdWaHqUYuLeblzo3VFzKesOrXDC4I7LRedcx2tRexsMjOb6n9uQWb74yThEFDv8zLmDEdtOcSgoGBKJ7KsfCI0VCZDJgitnpZTcZc4yceUmvmHeYidqY8/aKcNaJKHb+KIu6+gLUb0eIoraJePKBPndhM7nEP5z+Klezr2yyzfyOD6Vs23fitQTJ9Sbjv0+QjzWDQegsotPxvGrXMBa3LcTrweZrNK+CeZdgOmv/tLkFj77UzPOcSQWLykcCI7OLDw/C+TqzF3bZystWzrAgSO3P55j4R9G+hS+83YFYa4s24D/ZoxFRgAD4x9ZPdKL8PexVHa2xmidk8meihJre5zwV8HTc7ldCcTFcNKcLlekVqDUwetrmm8QRMaIedRk3isHAXcZtNopswgHTiwcuXpsCLlY0dhTWLHm+xdM2FY0tJySslpXzn3svxL3NO+9/tPDoSeQKMxjOIZX17u7XroHN/1j/4IY5lc5jgzvc+my88oW4JrMduBCYT60ubrEyu7YJzWICan46kWWLX0ma6tfocWi32vowtKM6WO8ejYo5sfuvmr5C/fzv5apmCe9vL848Tmhyd1FanBrjSDxU7DNGbQHr8MbWJXWdi31zJjsHjtCNfiibDZhJ7UalZsAHSm9qfnhpqcle72Mv1u+njt3tEKrvEgZKX75OX+0m9kskMzSl09Krtiy4CmfI45hxIi3pce8OwyqdKvZXUsEnjac8N3FL6mfFxnBwkBRA77B+yCEKgb3vC9lwzfV7lcxRICoQH7e5I47/z8rf10uJHxnfuXGBuaAWLUrmghwFHZ0IwNPUayAiy1nji9eqp63G6nKVAe45363iA57bhO68viBrRhg0LainX51WXT3Ws8sYgH13HNkZw0Im+YLiBkJ19leOJ3FNA1wL8Lro1mbriO+Zs1yqygqqtr/K482yNav6uJESK9nEaRmRkr0mCc6csc036Pea5hrheV7mVzNrBaCASvudZ1g6yknGD6C3DCDYwg3iqHM1jBn068ZV7ky/VZP9c+xKxLGTENnBpvKqlIV4UJclIfRy15iUY44kWlXC1HZqEeUoKqoz3nqNqf3t68MRVlp6sweuzen3is1Qa0d7NxfkqrKAGxbw6XG3JdE24hBPJSBOvskj4tJNJdp+lL2wclTGWtrzzBSLO4QQgs9Q0BGgV0YMFjCOv83AM5MBlITnudPPnr7kEZ457jqemmtL3tJbONKt8e8x0TjV75cHZVqnbqDsZW4sNF0QEb17Nq52hifImYZTkmp8XdbIyYpJ7+Vv8dLjLvMCGxw/QDbpJMJafMG7v4m3MjU231Mp6+9dvM8/8i8YN/B489TbKSAkhW5ygPSO7YZrmiRzyRoX43WIkSEQhPicJjZQUPhcC6a+upl3mPUmtqs453FRqq8JWfTZSVN9fB2CaOhVNZ6Zl+ZI4DI/y8/JuwVAczb2R6O6sGDYxrPRZcu76Mja/D5B6Crml0duHbL/+QqznV3auWjvFpOmmhx2zxo4WebWD008z+3JoqUAYbwwieCjxKk1sMpu7q6HZeBJKog5/dlyJW1i0FJeTT5sjTT81IMqFHqJRoFFX55I8TNJP6hi+oB22bOHtlrbgq95tuRRc+kUDAaHj2XaBj2sPjktFexq3gcHcVx3gbf78o1z5GiNmj7ORIewpvZna0/SbLZUHqGa0irfKll6Hmb0H3Zhx6llwmyd/xWN2IK/Pyp6AVu18XNY4P+Ig3BZMWW81xY92/dIL7Tg+4YuanmysEGe1G/tmoOTo6mTsyB/bTbHjGq7doDyJPrls0LW4Yxn2Utyw+MttGGZoWBDbVTi8HK0ZY1ENoDmmKCkLgNZ1mlrtNXk7fxHkQiyMIC1JzxAt1yajcubYQiR6ryBRqoDZ/urSwV/aUixAAQYSAraDQsjdgw5P7wP/AHvGMP2J5wb0XkhzcchguUTWMXppZqcD+Ur8HMhh+f+d7UEauTchZqpr0cJ+p2XuDH0ZDb7Ths1zCXVBUHPCTcXBpKojHQc8p3xo98UJV7Gg0Dv954E11e3WjeRzFtWE6I4ZblnU7p6LVIIBh8fNBczp9eR+jAXszKaLhEfkIXv3PayNU86bat8uRLKsuBu+Vt5P2TE6qpJ4bvRzMgmydrDyJ4ktb283dVPfpuSQEdix1jnsVnT5RlSAifYdwQDxsLIQys4PSNTPL3MtOCFg6eOaOln3JzKI8WAhElEq0vRQClz7b+U5k+XwmILUrHH/FKdlG58uWXXEIpRFmfDJmhsNU+vdPg9Fq4ZQizoCf95kbZhe3nNp6a61B4+YvxGQEPrJqI1U9kldXKJ65bGxiYG5FSPbw0iypUElX+kVA0m/fvLG3OlfpAz8KKqMuj9ob27k32U2nKKnkE24pCoGGHPianMfgkNcX5Eel4wEpTt4fPoHvsxJ4Dx9mnw/rhr3YfmhhX5IJyTwhwi209N2T+K84FLXrUEYclsz7lLUWM3or9neTfSPDYOn8m5uLkKyFr2cIZxJmA/A1DZiaOWLRZQ7CRJo5dZvqWxBlclRuf/LF4BPy0WBJxBpP+svfneqDx4sbTKm1D7eL8l1Un+i9ERiqXHcC8Uf1BWzPdVMbyQ2T6uCz7kto5MOR2ATQ6rnv5UaCVc+IOnMZ+8sHB70rbyul5mu2XNSUOMqrIkdO923CJzJOqTcXm7GRlnvHmz/7nbUUVTpOhBUdjuEr00x16Bp5EsLBvwFQSwcImMN7WzoKAADKCgAAUEsDBBQACAAIAFOmVDwAAAAAAAAAAAAAAAAuAAAAODM4MjYyMzAxMzVkYWNkYzM1ODQ4YzBhNzk0NGYzOGNcU3BpZWxlciAzLmpwZ52UeTzUWx/Hf2MwZnBdDFmGwZAt2YasMyMhiWay5bYoYWwVJsswjLhcyZ4ldRkhu4QQSbLTLUv2lCzZsk3EGJp51LP98/zxPM/nvL7/nO9yzvuc1/fLHmN/An49ZW5pDoA4AAB0sAD2e8AU4OHmhnBz8UAgECiUB8YH5+fj5eUTFxIWgEtJIKWlJBAIGfmjijJyR1AIhNIx5SMammg0Gqmob6ynZXRUG631owgICoXy8fKJ8fOLackiZLX+Z7FbAEEeIBfQB4PkAA5BEFgQxG4HkAf35AL9FPAPgTjAnFzcEB4ojPcgoPZXgAMEBnNwgrm4ODkPvGEHfoBTkEtIVtOEW5hwBSLnB9e6lfKQB3W86pXI2YENeW0X/0goTPSQmLiEwmFFJWUVtI7uMT19A9MTZuYWJy1P2drZOziec/rtqqubO9HD04t0MyAwKJgcEvV7dMwfsbfjUu+mpWdk3su6n5df8KiwqLiktLrmaW1d/bOGxta29o7Oru6e3sF3Q8Mjo2PjE9Mzs3Of5xcWl5bpXze3vm3vMHaZP7hAABj0T/1HLsEDLg5OTjAn5AcXiCPoR4AgJ5esJreQCQFyxU9YTusWD/x4ysOqV1CU9tkNERf/AZioPHpagf4D7SfZfwcW+X+R/Qvs31wTAB8YdPB5YEEAC+wwlfIiYAeGQj7yaz48/HnP1un4e0Hgo92nVHO/rU7V6h/7yoNO8pkEPJ9s0GlqIzBH84FtkhTsB2oN1yueSwVDrO1tinq/vw3hJ+1JzxuPWkLDKQ2SoBjc0lQGmC4yQm3F0ya9drPVA5zFvCUu3c4/knq6Ie6Yfreztq+7Mc4eepf1JpS2r0LGLhqS2QCVtu8NE4M9iU5L/NP8cPxCYBI+r8SK7C0yJLp5oUuqfa/pXnaEp4ZWYFRPi9HM49Fq8hUzOB50Qb0j4TcpyenCKvmk2rUrulXqgcRdX0yU4iJ/kP1m0Cr/DIFcMcbwn7DucW0Oa03aXW77DJlUx26oAOvhPAyvPosNtcJSGW42YMtteVh104fveLFxDHdYD9Ox1EE9+ia9gGF18glv1A0i3Me4NZ7VUFEK0AXimakMUpc0Hx2SjuIlkpQJbXLVqblbk6Y6IZBbRrZsABqQWFKM6lLI89Iy8eqOtrxtfypVQF/+LmNUm77cOvFluqne9vIZT5Jw69hcxrWCMI12FkflvtC7Q9YM56JnnMazPf67xq9FxNhARGk/JJ9gRla/wzrmGS5KR9/Xac5W262Xve5uGelzfTm3ZBK3AzbCQ0p75MwkT66I2Fu6hAAG9xkzvZJJSIot/lZ2rZpJgc/c6h0/l/C4/K3KYEbC7AMnzC89ZUvadW+cHCZEUZzc8nqoKlg5pnZhqqYwG8FSGVb/YKpTkVfgmtR4sQE1BbOY8QAvaRx0QoShbXFehBFqO340R8rQsh/lA/3wuLDL96VKUqEVssWxlCEtH9USjkzUjJa4ySlQqox92+S8fatfxzshZPRcfVWGtYGqTvRCvCvq+tUYcLKGhWLcpsksGxBhAy5d+YUvgusIxXYnwsrhfFyTmGu5gW+VwCtqZ85WvatQyNjE11fjK7LcU+zUpcgova3KWB3J25U6kmVZaxLznu5E8vvyeEuFpNEKx1THrDvdKyvkI+13CXiISdhM6Kpp64TzHwUTGRJ+QWaE18+1hf4Ki7osQK+kfM9BM9T2RULDI7LWbsD0UQyCeT92vRCbQJkqGusrWdatEy1rDM1yUBodvheBtXX2CDZsc2AJbnTk3OGLMeWYt8B2yeq7b4sb/dIGBw0MmMGBQRCnYHJIlLMQY15/lj7yXKoNknJj/mzLZYRmJ+S6ZkdYg/OvwYMk0mx2uMu4WrENKZ64cH0I1HeQC1rCchkZMafaDa2yX13b6ttq8CfL++ZSW2KxOO8vXrsL2z71/KEzvHcTXiM0E/WBDEVai2P/EEA4ONaxkyYcoIa0o6+V+OW3LoHSf3/sLOdpIpsdBt9GJlEcB6iHjBwoqp+sGmSTH31bZ6o1SNk9MbwXdsiIOdOMy+WIU8oVyKcSJemH75SPhWWLPHxmSRm+oM19VqOrWZfOolf6V8p+p6HPrTTxY4rtyBPRr92q9qFfi/d3kJ0vQn7OE8zV7w9rM5vojx6nlVPKJPGnFhLWgoTZACW6EvE4s+tYfT3LYGRNfTh17uPJ8ngTJXg6bxdCCbzx2CsCpvoeA2PwnqTbRFVMftEt802QO99q0nYCN/kXzxwyi4q6kNk+BcJG7OOqcL9Zay0eqk3pVruV0DsGTj7JjDReBI9QiY+GuqK+QRo9bXJGZZxiFnkgZGef1e1uzLeVb9Mva6biZB5YNG60/+UwDzmm4boxUAcGrUnSGIeqKv3/Tn+7WWaWJaoeu+GPfUpcp83qjO/LMIhus/YvhgLIknsGH5rSYxQn1mWBuZwWDkzB3tl9d0YYaXrVf9b5Kbe1Oj47uxvxSlWq40yVvgxLOmuBJR78cf1VjlIcrn2p3qbqkukQ/C1YYDtTPumSRQjAzG+7JDpIUSikui9us05zm6KE2muq1iyXfQEm7DNGx6OnnKL78t4J6Zn2inbregXcZUlIfa9NePrid3Mv6MO4eahMlshMyimDJ91uKE6kixJ4lhpzv8ZjShBtmNthv5YhrhFStl+E3RmhwvaON6PpR2M/cjHSts0sIwe/6n9S2ycIifuH/4n09V5Jv9wrhojU4gcMDp6B74Pj6boRdM/W3qKo9/nfleU0PkXtJ/mGSuyqziAjbjRBKu7NcV/TDbzq6Y+NFZi+YY4gjhZv70lX63wH29CPJulmluIO16XdXLTbvhwqONYPAW94z3AEPzCxlmO5sUae4GjaJCPT6CvLFqYM6W/LtfRLNVdLKQb0N8MVtZPJH89Z7T2ITeRFHbVjqbShiuQdixnnZ1kloWVjS42FKd5KDRl6Rl8CPcadYi922Hwi67d0AK6sAfz5ovin44K0vox2ckRSmlIgzOLlx75+xycUDbrxy9tN0MLXiNwP50/UjSqdE3UkxNN2IvgwzZ3PqEks4aYhn5V9Uzdols9AXqO9uGt8di8bWIv6k+kqnVWJYejM3qHyMFKtLppCr5T4JFr2sAG7XptB6vhuLCarzwtg9sZ5yEbIRArIxAUAcIIZEJy5yjv93JsmMBEcozd8Q61Q9KuGmLokEWBO/4Fcl9hkA5EYeFT7Je09t3dI1CmoP4o3e52WLDzGob0et0WbkPCmMU6gv+i5BCaGTr9IIyZX1J4ZysGk126QXpGCLVrjdxavDlWOWaN9NFzwGsVhLfK042OrOOm4xWplC7x9DA9KJsnUWZ6CY5BKGcQOR/wS89pw5wPVrGtuMaK+8M2n6QiRt1ggdHQ0DQ9BbcwYMpqlF6uWPVUuPnr2Sw2HlLlNv8kc5dmXNwFDBBySPf43UEsHCMnlP3cHCgAAngoAAFBLAwQUAAgACABTplQ8AAAAAAAAAAAAAAAALgAAADYxZmMwZmJlMTNiYzUyMjJjNWU1OGIwYmNmODIzM2E5XFNwaWVsZXIgMi5qcGed1Xk41PseB/Df7DOWGEuYmJEhclC2UCTF2MpWOJaTtRxcSVG2kS1bhjMp2Y4lW1nOZMuSJQzDSNaMNYxkyTijLJP16jx3+ef+ce99f5/vX5/P832+r+fzfJ/vwejBDMBvQjAmACAwAIAOF3AwAVwCkHA4Ag5DIhAIFArJxSPEy8PNzSMmIMgnJIHBYSUw4uKS0kqyklIKeHFxOY2TCqeV1dTUcLJaOpoq2kqqaio/DgGhUCgebh5RXl5RlePix1X+5xy8BdBIIBdQgoCkADAaBEGDDqgA7vCeMNBfAf4REBgChcERSBQX92FDDT8ABkEgYCgEBoNCD6vEwzoARcMEjivrwQUtXRBSfkIqEeQ8JP5iRauw1QBbWtX1TiSK66iIqBhG5oSs3El5NfUzGppaZy/pGxAMjYxNrl6ztrH92c7ezf3GTY9fPb3u+gfcux8YFBwV/TAmNi4+4XHKk6epz9LSM57nFxQWFb94WVJZVV3zurauvqGtndrRSevqpg8ODX8YYYyOjc8y5z7Nf15YXFpe+/ptfWNzi/N9+4cLBEBA/8x/dKEPXWAoFAJF/HCBwPd/NKChsOPKcAE9S4SLn6CUSgRS6CI5r6IVhVe1Ygu73hngOiqtNiuz9oP2l+y/g0X+X7J/wf7tGgd4IKDD4UHQgC6w7ov21jixwcol5yeoRlXPVPyZssSyS8U0TZHaGujv6ufFHyP3c+yL5365ON3ewNkffurDoqiMDLHOGQO3bHTSBLOykS6TGCfeR75Clw+AMYZfH4+MfiXhjohO1ReW08nrorUJDeZETFMZkVfMJVVC1qdmNThRVaGfJr/HsGhfJHg5XvOjVhAqXrS9APhcrGyHCZu2k9+3vBcVhSxt8L1hWp4V06HKTVlUrIOWa8aZ1ZbTNvh9cGfJLujx2D6mpB1T9vK+/HtDm1tI2X3wtTDhCQ7NbJ/BvlnlLHLX3EM+d8OngLIMC7RdYTFR5TU7e6CuMwy/Y9HQvTERYG65OGfLACDKGAhZgA43GJ3NGxpVolTKpjBLpxSr9VgLQaz+hZ5UkS4AW9eKH0322hZwSmg+VslQ8ifara5nprnLlRNB+k8gJHo73nPFTPNzSagJ+5da6ikk7XwGu5d4q8hbbCDCTk+8yFDUGc7nimgCfAJxndtOSf6+tT+rGiq4K3ZU5WSI4IvrtGff7IhHPFxzYKrtQ4bKRtqQn4dP2UXftDAhlJKo4QQzI8CDMZSTFarBVPSY3YpvZkB9eIelO/y8b5flMRoq2UTkuiRmcR/PGRmibYdlluTXlLOKfBaGprZO9Xalqkb85heVTRD5cgGbwq5ibuYz+/gl+Bxjpt+nY0yDci82vui2QulESCabbDZ8N525H1s4oh34bOB65o3BYUeVkvlCKGuCEa6npb1GC95+Ha5pLrGrPrjr46K0mTptAaQpQRPp5UlLWc5zCADzNcQuTCpUNB6f8VHCUD/ImKuwgGSmcvsCrxg+m6CpjfVeOusmFyB/QZ6AxEsmAN9LmRqJjcJzBwAP8TU0BIe2X7lhl/fZ+TZG58tvbz0ks4gfxyiiFF/OFHtHjz3VeHYz7UoZ4z74TKVlWvd4R/qDN/3u/guJtnEWsEzTnsyTIyGm6T6fJaTj6a92DdU3WtrMhX4JzH97b6shKv2PGXJ5Ucot06etPEQ6OWWSQdvYSH5LUrqiO1vYOOiuzqI+A3Crn+QOgP67nH5EsaWBEGimpbqsroq9ci64+9ytvly95JHmYMrzFs9jhBSjfoqejGv2z100nMpLhC4bN9IckItC8zyWPyUTB1n2Xv1d5HKUUf+Kf9e1uHJnoycPGnLv/unE3bZ/baA7keU8uo3ZoQ8GNNREMlW4TDEN5P5IEO59uIKlQejeWiyz+bovD+fOEsPzZEiQoJs2v+vVpWXDIkQw0MqZnvvE2Ajor14q2BGOevV76gW37Ms86KS8MJe+O960xefhXDul7cs9s02K7tZHXpPhyNOgUdVkL04YfewPig9rwG7cThhMsZGOiPizlzgtdJJHuV20Teqh5SICHK79ZQ6RbNuGFfM21fIr9eIaaK3+JuDvqVPRH5Lj5nTisbF0VspwxlIjseSLPS1xg5sULOgbRpmvadF8aBuePyG+0Hz3Y4N5tC5feaNfufmZ/LMHgMfo3zydbdrfOWg6WTSK57wN6ALK2ROzvy8kBaC1e2SaSSgqA3Cu32d6vNzQQXw6wuhsgSx+PJJiQMR8KGfWJRnNwy+2pnPNfHtv5JY9ybXtSqdPmFUlvKcjWaznFhUdmIfWkFfgRpHNpzd3DGNFZG/2RCWN0S0QmaGnBwtGzuMXU9foFWmrsFYFFNTwG5l2RwRHImY6yYbC47rXCB82b6En3lEPgPvznQ/WVsLUN0hAkEcnLvYnJkt2x9wsmter90h/fmYcTYbvpfjTXcOw8/fYyfGU3WPMEKLZh3R7WW4/9IwxlvAJz95FImqI9U66oT4cd6B+LSwpHBTTUmtNCxWzXZ/UxdkDWyE/TRAJdO4eYxuHoH7jYy+7bhw+gq+4cQ0zDazAkDrscqZDWyJRePgAsBZOYeOZXEGX2jAFs0Y9nl/PuWlpKXswZPFr2MgmisPASs0edsFk2FVg3DHP0GyfiqWK84fwy0E++4Zf7RCh1g0ag9P/Nq+P4GTOa2I5Vg+4tiubpZK8+6CcuXeJ5ICCj08XSBOikXwVQHIepdp/Z4J49UpNc63PyJaywkCOtTNyjxdwfOEeL0PKJ1sPRPCUqSB19CSWvSLt8JGyqQQUBvyOOgNoSeeYABwG8yiJL+b8ca9xYvyvMzF+0pLgNxBgBsJ6A+zYvtoV4zyjBD6yOAsvhVwvs0g/unu7Kx9A6TZlh2/0OX41zPK2WMYdbZabbiYf4Ug/MRBvNTKadXpyTnBI0kPCWFN4vThqF18cqHHx0ZWhfHHAIz0G67Hau4dw6QBCGWstphhf6pfv/PzPyLTbmjSZe7XLBfvq6w/aIx/MOnDuJn+PbT8AchO+6o5bvVUciXgB+XbWFISlW8fuR3sPNx/9WLjVjuPrgR/pMYhOXJczwX34FVJZYrtp4WVP7CUNBqVuKVdb/WE0WYbE48mtpdUW8OvkvKVs3NBgj3FFzOBUsPQlsfMFG7KTn0YKhVOYil6HfyVsleJfxh7Xd5fPT10Bth/DgEAcS7ikTzauuveE0W96sPq6JL2ttHp5vYXcUeUN9WT2IypWtTrj2xX2VPEmqS75fUhQjpe+MeS2lqhs0bk5nVLJ0cBa5vSjE8OuFZ7SWeE3xm2Q/Lfhc50Aq1t7Q309J6JRzG3GnK+clKsyaXRpyjG6x4SzJ+QPqR3OAA7G/g5QSwcIHWjapswJAABZCgAAUEsDBBQACAAIAFOmVDwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vhtj9w0EP5Mf4UVpKoFNpf3ZNXdVlwFonC0SFuKhCqQ40w27uVlsZ1e9n4Yf4A/xthJ9rW9XumJFtr9krU9mXlmnrE9k9mDrirJSxCSN/Xccm3HIlCzJuP1cm61Kp8k1oP7t2ZLaJaQCkryRlRUzS3f9iw93/L7tz6byaK5ILQ0Is84XMytnJYSLCJXAmgmCwC1N0/bjpecivWT9AUwJbcLvZJH9apFK0q0OMeq7IzLcXiiDeZNrQiR/BIQtKfnZicGywxaVvKM01rbM9hQiJALnqlCy0aBRQrgywL1RZHTq2NNI7LFWiqoSPcriGZueW6og7HuR34/koyWaDF0zNLuyKiBlwtQCkMnCe1g69RS8Gxv8EieNuV2atXwWj2kK9UKE3d/mFqotTaAtoQG/HW9LGGY8zAsBbDztOkWfRT8XvXT9cq8YgCly4dN2Qgi8IUwRIHhmfZPI6ORbqQcI+MYiUGHVrpZd6eekTDPtH8aqZLXPbTBc3f02nVGM1wSPaHDiOmycb6kKZRzyyJtzdXZOFCcnQ+uuv0Lj9sqxTzdzYKNTvemdM5ODvJndg6ihrJPkhq5bZtWkpe0HG0ZIBkwXuGwXxhCQjVdPyOAfjaDpYAReJ/lfcDM6l4iHkzPTkYQGoNErEzhdkV/lPZF7yZVNMjOI6ldLckz3KylRTKq9LLeFCVUgDtGmeRAqMttkE55mbmW2VQczda0QhF/Gjh5nLHAdyJG3SgOp0EYxxBPs6nnp+nzHxqR2i9Wyx42r08pO1+Kpq2zo+BIRYX6SeczqU28TQ50uHHsaeTs/DCD17hmJ4lzMH3ZH00HmaYKJLQGKc12ULuJbw6kxpwt4ykyuLsDDNdfk/h4DK0KumuUrkHsMWXU/dhk+/zRGoNryMGzZKWd0Zm2AsiGw3VESVao0mz2DSDMvZ6maxDmvRfCXDuKp7u/eGRsuv/7xNgRY/57YWyC93RgSPJstLf7Cz56kjBUIDjb+ND9Lg1JaLkd7Lubu/31rm/vo9d57ulgD75r6NfzfbhGJF5HKFhxrM8mpgqpaDcgIzSVTdkqWDC8W+qzhpkojQCHosd3jGynL33PVC445+s/Oe9gW4bgHcIv8ZKje05dKzH+HYLWxwR5tvdh8hNemx73FfTE8X+QHnpIzsS1g1ews1+kvZke5x+Q4944OX4Sj+REHyY5HTZbUjdyY2h/aUWe0qLGnq5bbYd3urtkTij5gtzpyITgsXf3tzuYeXfJl0RvMXJyRHXe1qbmtI5U38Dd8bYb9OrL40meS1Dm8kt6vibxVSlyDfBXR/kpdModQnz7j7ZR977jCExyKKQiWUsyAZycUnkOKqVliWu8Irc/d517TwXlNTJqk+9B52lBFZGAgGqCLSrg04jpSuArogVewAVw7DMQ9Dl2GwiCFxXBTgMmRhKbClYogt2ybcbf8hrdzVrBCvINryVVl0bPghUc0uElActyR7e2T6q//lyWHFtMopkelCPf2DsL2kpEw1Ev4jxFj7Q/GmPvFGapusQIKLsfP24UjkC/IbE9bHN8D01U5Az/X2LDDGUP9hSWvNa2sWXKcF0A+oImFiuO8Rd2H1zrODsVMmDt03GD1cqbEu6oWjEfJyQejfn2O4jp0XXrO/afh3WbSdjA9qKhWvN2y7O3KTSjw0ITYjfMnRgYhZRNEzcIvTCP8iSeOrkf+PT5EF/3ndsDxw6Sfsf5trvX2jnR/6XavLGGID7kKfETL/J8x/XDjLKM+WESJMyh8TQIcj9hI0/Ef/fGOwoP+rWBtOATaVeSlhySFrk5c/IUXD9loed5LIQwSZ2U5Ynn+3S6Ic17V9IcO94nbdhqzmFj5310rJ3sfhYzn4KHz9X3/wZQSwcIovhrdnsFAADgFgAAUEsBAhQAFAAIAAgAU6ZUPOP9z2cEFAAAmhQAACkAAAAAAAAAAAAAAAAAAAAAADM5NDBmN2RjNDMwNmNhMTY3NTk0NTc3ZTc5ZDkyM2JiXEtvcmIuanBnUEsBAhQAFAAIAAgAU6ZUPJjDe1s6CgAAygoAAC0AAAAAAAAAAAAAAAAAWxQAAGU3MTVmMDdlY2FlYmM5ODE0NTI1ZjZmODc5MGYzNDNhXFNwaWVsZXIxLmpwZ1BLAQIUABQACAAIAFOmVDzJ5T93BwoAAJ4KAAAuAAAAAAAAAAAAAAAAAPAeAAA4MzgyNjIzMDEzNWRhY2RjMzU4NDhjMGE3OTQ0ZjM4Y1xTcGllbGVyIDMuanBnUEsBAhQAFAAIAAgAU6ZUPB1o2qbMCQAAWQoAAC4AAAAAAAAAAAAAAAAAUykAADYxZmMwZmJlMTNiYzUyMjJjNWU1OGIwYmNmODIzM2E5XFNwaWVsZXIgMi5qcGdQSwECFAAUAAgACABTplQ8ovhrdnsFAADgFgAADAAAAAAAAAAAAAAAAAB7MwAAZ2VvZ2VicmEueG1sUEsFBgAAAAAFAAUApAEAADA5AAAAAA==" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" />
 +
<br\>
 +
<br\>
 +
{|border="0" cellspacing="0" cellpadding="4"
 +
|align = "left" width="450"|
 +
Hast du deine ermittelten Wurfbahnen notiert? <br\>
 +
Dann ist dir sicher aufgefallen, dass sich die Form unserer Gleichung stark verändert hat. Wie bereits erwähnt ist die Scheitelpunktform eine alternative Darstellung für die Normalform.
 +
<br\>
 +
Quadratische Funktionen lassen sich auch so darstellen: '''f(x) = a(x - x<sub>s</sub>)<sup>2</sup> + y<sub>s</sub>'''
 +
<br\>
 +
Der Parameter a bleibt also erhalten, b und c fallen weg. Dafür bekommen wir zwei Parameter hinzu: x<sub>s</sub> und y<sub>s</sub>.
 +
Du fragst dich jetzt sicher für was '''x<sub>s</sub>''' und '''y<sub>s</sub>''' stehen. Das kannst du in der nächsten Aufgabe herausfinden.
 +
 +
|width=100px|
 +
|valign="top"|
 +
 +
GEOGEBRA
 +
 +
|}

Version vom 20. Februar 2010, 21:09 Uhr

1. Fußball-WM 2006 - Wasserverbrauch 2. Quadratische Funktionen und Klippenspringen 3. Übungen 4. Quadratische Funktionen und Volleyball 5. Quadratische Funktionen und Fußball 6. Quadratische Funktionen und Basketball


Quadratische Funktionen und Basketball

Neben der Normalform gibt es auch die Scheitelpunktform.
Mit dieser kannst du in der nächsten Aufgabe experimentieren.


Aufgabe 14



Hast du deine ermittelten Wurfbahnen notiert?
Dann ist dir sicher aufgefallen, dass sich die Form unserer Gleichung stark verändert hat. Wie bereits erwähnt ist die Scheitelpunktform eine alternative Darstellung für die Normalform.
Quadratische Funktionen lassen sich auch so darstellen: f(x) = a(x - xs)2 + ys
Der Parameter a bleibt also erhalten, b und c fallen weg. Dafür bekommen wir zwei Parameter hinzu: xs und ys. Du fragst dich jetzt sicher für was xs und ys stehen. Das kannst du in der nächsten Aufgabe herausfinden.

GEOGEBRA