Übungen zu a: Unterschied zwischen den Versionen
(→Aufgabe 8) |
|||
Zeile 1: | Zeile 1: | ||
__NOTOC__ | __NOTOC__ | ||
− | [[ | + | <div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;">[[../Einstieg|1. Fußball-WM 2006 - Wasserverbrauch]] | [[../Quadratische Funktionen|2. Quadratische Funktionen und Klippenspringen]] | [[../Übungen zu a|3. Übungen]] | [[../Quadratische Funktionen und der Parameter c|4. Quadratische Funktionen und Volleyball]] | [[../Quadratische Funktionen und der Parameter b|5. Quadratische Funktionen und Fußball]] | [[../Quadratische Funktionen und die Scheitelform|Quadratische Funktionen und Basketball]] | [[../Endspurt|Endspurt]] |
+ | </div> | ||
+ | <br\> | ||
Version vom 23. Februar 2010, 12:58 Uhr
Aufgabe 7
In den Funktionsgleichungen unten hat a bereits einen bestimmten Wert angenommen. Ordne den blaugefärbten Parabeln die jeweils richtige Gleichung zu. Die Normalparabel (schwarz) dient dir als Orientierung.
Hilfe
Merke:
Ist a = 1 heißt der dazugehörige Graph Normalparabel. |
.
Aufgabe 8
Kreuze die zutreffenden Aussagen zu obigen quadratischen Funktionen an. Es sind jeweils mehrere Antworten richtig.
f(x) = 3,5x2 (!Die Parabel ist nach unten geöffnet.) (Die Parabel ist nach oben geöffnet.) (Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (Der Punkt [2|14] liegt auf dem Graphen.) (Der Punkt [14|2] liegt nicht auf dem Graphen.)
f(x) = -x2 (Die Parabel ist nach unten geöffnet.) (!Die Parabel ist nach oben geöffnet.) (!Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (Der Punkt [1|-1] liegt auf dem Graphen.) (!Der Punkt [2|2] liegt auf dem Graphen.)
f(x) = 2x2 (!Die Parabel ist nach unten geöffnet.) (Die Parabel ist nach oben geöffnet.) (Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (!Der Punkt [0|-2] liegt auf dem Graphen.) (Der Punkt [1|2] liegt auf dem Graphen.)
f(x) = -0,1x2 (Die Parabel ist nach unten geöffnet.) (!Die Parabel ist nach oben geöffnet.) (!Die Parabel ist enger als die Normalparabel.) (Die Parabel ist weiter als die Normalparabel.) (!Der Punkt [-1|2] liegt auf dem Graphen.) (Der Punkt [-1|1] liegt oberhalb des Graphen.)
.
Bevor wir zum nächsten Kapitel gehen, hast du hier noch einmal die Möglichkeit alles wichtige zusammengefasst zu wiederholen:
Merke:
Die Graphen von Funktionen mit der Funktionsgleichung heißen Parabeln. Sie sind symmetrisch zur y-Achse. Der Punkt heißt Scheitel der Parabel und ist der tiefste Punkt. Ist a = 1 heißt der dazugehörige Graph Normalparabel. |
Alles klar? Dann kann's ja weitergehen.