Übungen zu a: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
<div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;">[[../Einstieg|1. Fußball-WM 2006 - Wasserverbrauch]] | [[../Quadratische Funktionen|2. Quadratische Funktionen und Klippenspringen]] | [[../Übungen zu a|3. Übungen]] | [[../Quadratische Funktionen und der Parameter c|4. Quadratische Funktionen und Volleyball]] | [[../Quadratische Funktionen und der Parameter b|5. Quadratische Funktionen und Fußball]] | [[../Quadratische Funktionen und die Scheitelform|Quadratische Funktionen und Basketball]] | [[../Endspurt|Endspurt]]
+
<div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;">[[../Einstieg|1. Fußball-WM 2006 - Wasserverbrauch]] | [[../Quadratische Funktionen|2. Quadratische Funktionen und Klippenspringen]] | [[../Übungen zu a|3. Übungen]] | [[../Quadratische Funktionen und der Parameter c|4. Quadratische Funktionen und Volleyball]] | [[../Quadratische Funktionen und der Parameter b|5. Quadratische Funktionen und Fußball]] | [[../Quadratische Funktionen und die Scheitelform|6. Quadratische Funktionen und Basketball]] | [[../Endspurt|7. Endspurt]]
 
</div>
 
</div>
<br\>
 
  
 +
<br\>
  
 
<div style="border: 2px solid #00CD66; background-color:#ffffff; padding:7px;">
 
<div style="border: 2px solid #00CD66; background-color:#ffffff; padding:7px;">

Version vom 23. Februar 2010, 13:10 Uhr

1. Fußball-WM 2006 - Wasserverbrauch | 2. Quadratische Funktionen und Klippenspringen | 3. Übungen | 4. Quadratische Funktionen und Volleyball | 5. Quadratische Funktionen und Fußball | 6. Quadratische Funktionen und Basketball | 7. Endspurt


Aufgabe 7

In den Funktionsgleichungen unten hat a bereits einen bestimmten Wert angenommen. Ordne den blaugefärbten Parabeln die jeweils richtige Gleichung zu. Die Normalparabel (schwarz) dient dir als Orientierung.


Hilfe


Maehnrot.jpg
Merke:

Ist a = 1 heißt der dazugehörige Graph Normalparabel.
Ist a > 1, dann ist die Parabel enger (gestreckt) als die Normalparabel.
Für 0 < a < 1 ist die Parabel weiter (gestaucht) als die Normalparabel.
Ist a negativ, so ist die Parabel nach unten geöffnet.

Aufgabe3a.png Aufgabe3b.png Aufgabe3c.png Aufgabe3d.png
y= 3,5 x2 y= 2 x2 y= - 0,1 x2 y= - x2

.




Aufgabe 8

Kreuze die zutreffenden Aussagen zu obigen quadratischen Funktionen an. Es sind jeweils mehrere Antworten richtig.

f(x) = 3,5x2 (!Die Parabel ist nach unten geöffnet.) (Die Parabel ist nach oben geöffnet.) (Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (Der Punkt [2|14] liegt auf dem Graphen.) (Der Punkt [14|2] liegt nicht auf dem Graphen.)

f(x) = -x2 (Die Parabel ist nach unten geöffnet.) (!Die Parabel ist nach oben geöffnet.) (!Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (Der Punkt [1|-1] liegt auf dem Graphen.) (!Der Punkt [2|2] liegt auf dem Graphen.)

f(x) = 2x2 (!Die Parabel ist nach unten geöffnet.) (Die Parabel ist nach oben geöffnet.) (Die Parabel ist enger als die Normalparabel.) (!Die Parabel ist weiter als die Normalparabel.) (!Der Punkt [0|-2] liegt auf dem Graphen.) (Der Punkt [1|2] liegt auf dem Graphen.)

f(x) = -0,1x2 (Die Parabel ist nach unten geöffnet.) (!Die Parabel ist nach oben geöffnet.) (!Die Parabel ist enger als die Normalparabel.) (Die Parabel ist weiter als die Normalparabel.) (!Der Punkt [-1|2] liegt auf dem Graphen.) (Der Punkt [-1|1] liegt oberhalb des Graphen.)

.


Bevor wir zum nächsten Kapitel gehen, hast du hier noch einmal die Möglichkeit alles wichtige zusammengefasst zu wiederholen:


Maehnrot.jpg
Merke:

Die Graphen von Funktionen mit der Funktionsgleichung f(x)=x^2 heißen Parabeln.

Sie sind symmetrisch zur y-Achse. Der Punkt S(0\!\,|\!\,0) heißt Scheitel der Parabel und ist der tiefste Punkt.

Ist a = 1 heißt der dazugehörige Graph Normalparabel.
Ist a > 0, dann ist die Parabel enger (gestreckt) als die Normalparabel.
Für 0 < a < 1 ist die Parabel weiter (gestaucht) als die Normalparabel.
Ist a negativ, so ist die Parabel nach unten geöffnet.


Alles klar? Dann kann's ja weitergehen.

\Rightarrow nächstes Kapitel


\Leftarrow Zurück zur Übersicht