Seite 5
Teilaufgabe f)
Schauen wir uns jetzt noch einmal die Geraden die nicht durch Z verlaufen etwas genauer an. Sollen Geraden die nicht durch Z verlaufen zentrisch gestreckt werden, genügt es, nur einen Punkt P der Geraden g abzubilden. Die Geraden werden nämlich auf parallele Geraden g' abgebildet und haben deshalb die gleiche Steigung. |
Jetzt müssen wir noch t berechnen!
g: 1,5 (y-Koordinate des Punkes A) = -0,75 (m als Dezimalbruch) 2 (x-Koordinate des Punktes A) + t
t = 3 (Berechne den Wert)
Die Gerade g hat also die Gleichung: y = -0,75 (m als Dezimalbruch) x + 3 (t)
2. Die Gerade g wird jetzt mit k = 5 gestreckt.
Für k = 5 hat A' die Koordinaten (6 (x-Koordinate)|3,5 (y-Koordinate))
Gib jetzt die Geradengleichung für die Geraden g' an!
Die Gleichung einer Bildgeraden berechnet sich allgemein nach der Vorschrift y = m (x – xP') + yP'
g':y = -0,75 (m als Dezimalbruch) (x - 6 (x-Koordinate von A')) + 3,5 (y-Koordinate von A')
g':y = -0,75x + 4,5 (grüne Klammer des letzten Kastens auflösen) + 3,5
Die Gerade g' hat also die Gleichung: g':y = -0,75 (m als Dezimalbruch) x + 8 (t)
→Jetzt hast du es fast geschafft! Zum Schluss darfst du noch ein Kreuworträtsel lösen!