Grundlagen der Zerlegungsgleichheit von Figuren

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche


Grundlagen der Zerlegungsgleichheit von Figuren

Auf dieser Seite lernst Du die Eigenschaften der Zerlegungsgleichheit von Figuren kennen.

Bearbeite die Aufgaben sorgfältig!
Nicht mogeln...schaue erst die Lösungen an, wenn du die Aufgaben selbstsändig bearbeitet hast! Denn nur so lernst du am Besten!

1.Station Wiederholung des Kongruenzbegriffes

Ebert MotivatorKongruenz.jpg


Weißt Du noch was man unter Kongruenz von Figuren versteht??
Eine Wiederholung kann sicher nicht schaden.

Teste Dein Wissen!


Ein anderes Wort für Kongruenz ist Deckungs-gleichheit


Hinweis: Kongruente Figuren kann man zur Deckung bringen



Aufgabe: Kongruente Dreiecke


Findest Du alle Dreiecke, die zum Dreieck A kongruent sind?
Gib die Buchstaben an.


Ebert imageKongruenteDreiecke.jpg


1. Kongruente Dreiecke zu A sind?

B und D
C und E
G und H
J und K
I und F

2. Markiere die richtigen Antwort

alle kongruenten Figuren haben die gleiche Farbe
alle kongruenten Figuren haben den gleichen Flächeninhalt

Punkte: 0 / 0



War Deine Lösung richtig?


2. Station: Wie erzeugt man kongruente Figuren?

  • In dieser Darstellung siehst Du drei Möglichkeiten, wie man kongruente Figuren erzeugen kann.
  • Dreieck A, B, C und D sind kongruent zueinander. Wie kann man die Dreiecke B, C und D ausgehend vom Dreieck A erzeugen?
  • Im 1. Schritt wird das Dreieck an einer Achse gespiegelt. Diese Spiegelachse kannst Du an den roten Punkten ändern. Beobachte wie sich das gespiegelte Dreieck verändert.
  • Im 2. Schritt kannst Du das Dreieck verschieben
  • Im 3. Schritt kannst Du das Dreieck drehen. Der Winkel zeigt Dir dabei an, um wieviel Grad Du das Dreieck drehst.
  • Spiegelungen, Drehungen und Verschiebungen nennt man Kongruenzabbildungen, da die Bildfiguren in allen Maßen mit der Ausgangsfigur übereinstimmen. Bildfigur und Ausgangsfigur sind kongruent zueinander



3.Station: Das sollest Du also wissen

Ebert MotivatorHinweis.jpg
  • Zwei Figuren sind zueinander kongruent, wenn sie durch Verschiebung,Drehung oder Spiegelung
    ineinander überführt werden können.
  • Diese drei Abbildungen nennt man daher auch Kongruenz-abbildungen.
  • Kongruente Figuren haben den gleichen Flächeninhalt.




4.Station: Wofür können wir die Kongruenz von Figuren gebrauchen?


Du kennst sicher ein paar Anwendungsbeispiele wofür man die Eigenschaften der man die Kongruenz von Figuren nutzen kann.
Dazu gehört zum Beispiel die Konstruktion von Dreiecken, wofür man die Kongruenzsätze benötigt. Kennst Du noch alle davon?
Ordne die richtige Abkürzung der Beschreibung zu!

Zwei Dreiecke, die in ihren drei Seitenlängen übereinstimmen, sind kongruent: SSS-Satz
Zwei Dreiecke, die in einer Seitenlänge und in den dieser Seite anliegenden Winkeln übereinstimmen, sind kongruent: WSW-Satz
Zwei Dreiecke, die in zwei Seitenlängen und in dem eingeschlossenen Winkel übereinstimmen, sind kongruent: SWS-Satz
Zwei Dreiecke, die in zwei Seitenlängen und in jenem Winkel übereinstimmen, der der längeren Seite gegenüberliegt, sind kongruent: SsW-Satz



Im dem nächsten Abschnitt lernst Du ein weiteres Anwendungsbeispiel für die Kongruenz kennen
Hier geht es weiter:

Zerlegungsgleichheit von Figuren