Station 3
Aus DMUW-Wiki
Version vom 3. Januar 2010, 01:58 Uhr von Sarah Hatos (Diskussion | Beiträge)
Station 3
Aufgabe 1
Die vorherige Aufgabe hast du mit dem Gleichsetzungsverfahren gelöst. Versuche nun das folgende Lineare Gleichungssystem mit diesem Verfahren zu lösen!
( I ) y + 3x = 4 und ( II ) 3y = 6x + 3
Beim Gleichsetzungsverfahren muss bei beiden Gleichungen auf einer Seite dasselbe stehen, damit du die beiden Gleichungen gleichsetzen kannst. Löse also nun beide Gleichungen nach y auf.
( I ) y + 3x = 4
y = + 4
( II ) 3y = 6x + 3
y = +
Wenn du dir nun die beiden Gleichungen anschaust, merkst du sicher, was du nun gleichsetzen kannst, um eine Gleichung mit einer Varaiablen zu bekommen.
=
2x + 112x-3x + 4-3x
Nun kannst du den x - Wert berechnen, indem du deine Gleichung nach x auflöst
-3x + 4 | = | 2x + 1 |
-3x - | = | 1 - 4 |
= | -3 | |
x | = | |
x | = | 0,6 |
2x3/5-5x
Super! Allerdings fehlt dir für die vollständige Lösung des Linearen Gleichungssystems noch der y - Wert. Hierfür musst du den x - Wert einfach nur in eine deiner beiden Gleichungen einsetzen. Wir nehmen hier Gleichung ( I )
y | = | -3x + 4 |
y | = | -3 * + 4 |
y | = | + 4 |
y | = |
0,6- 1,82,2
Um sicherzugehen, dass dein Punkt ( 0,6 | 2,2 ) auch die Lösung des Linearen Gleichungssystem ist, mache die Probe, indem du den Punkt in deine beiden Anfangsgleichungen einsetzt.
Zuerst Gleichung ( I ):
y + 3x | = | 4 |
+ 3 * | = | 4 |
2,2 + | = | 4 |
= | 4 |
1,80,62,24
Wir nehmen nun noch die Gleichung ( II )
3y | = | 6x + 3 |
3 * | = | 6 * + 3 |
= | + 3 | |
6,6 | = |
Somit lautet die Lösung des Linearen Gleichungssystems L = { ( | ) }
2,22,20,66,66,63,60,6