Seite 4
Teilaufgabe d)
Im Applet siehst du den Querschnitt des Luftballons.
Weißt du auch noch, wie sich allgemein der Flächeninhalt bei einer zentrischen Streckung verändert?
1.1) Bearbeite zuerst den folgenden Lückentext! Der Flächeninhalt der Urfigur hat den Wert 1 (FE) (FE=Flächeneinheit). |
Super gemacht! In der nächsten Teilaufgabe kannst du jetzt etwas Neues entdecken! Viel Spaß dabei!
Teilaufgabe e)
Wie verhält sich eigentlich das Volumen eines Körpers wenn dieser vergrößert oder verkleinert wird?
Schau dir dazu die Tabelle an und überlege dir, wie sich die Werte für V' in Abhängigkeit von k verändern! Das Volumen V der Urfigur hat den Wert 1 VE (VE=Volumeneinheit).
Du kennst bereits die Formeln zur Berechngung der Längen von Bildstrecken und der Flächeninhalte von Bildfiguren. Du kannst sie dir noch einmal anzeigen lassen! Kannst du dir vorstellen wie die Formel zur Berechnung des Volumens des Bildkörpers aufgebaut ist? Überlege erst ein bisschen, dann darfst du dir einen Teil der Formel anzeigen lassen. Super! Jetzt musst du nur noch herausfinden, welchen Faktor man für das Fragezeichen einsetzen muss. Prima! Du hast die Formel selbst herausgefunden. Hier kannst du sie dir noch einmal anzeigen lassen:
|
→Du hast das toll gemacht! Schnell weiter zu Teilaufgabe f)!