Die quadratische Funktion der Form f(x) = ax²

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
Mathematik-digital Pfeil-3d.png
Lernpfad

Die Quadratische Funktion der Form f(x)=ax²


Auf dieser Seite lernst du die die quadratischen Funktion mit dem Vorfaktor a! Bearbeite den unten aufgeführten Lernpfad

  • Auswirkungen des Vorfaktors auf die Parabel für den positiven Vorfaktor a
  • Auswirkungen des Vorfaktors auf die Parabel für den negativen Parameter a
  • Auswirkungen des Vorfaktors a auf die Parabel auf einen Blick
  • Aufstellen der Funktionsgleichung
  • Aufgaben zum Einüben der quadratischen Funktion f(x)=ax²


Wie schon am Ende der Lerneinheit „Normalparabel“ angekündigt, werden wir die Normalparabel nun um einen Parameter erweitern.

Es kommt jetzt der Parameter a als „Vorfaktor“ hinzu, wodurch folgende Funktionsgleichung entsteht:


f(x)= a\cdot


STATION 1: Auswirkungen des Vorfaktors auf die Parabel für den positiven Vorfaktor a


Bearbeite das folgende "Prettytable":

Quadratische Funktion f(x)=ax2 Hinweise, Aufgabe und Lückentext:

Hinweise:
* In der Grafik ist die Normalparabel schwarz eingezeichnet und die von a abhängige quadratische Funktion blau.
* Bediene den roten Schieberegler mit der linken Maustaste, er verändert den Wert von a.
* Ziehe im Lückentext die möglichen Lösungen mit gehaltener linker Maustaste in die richtigen Felder.


Aufgabe:
Bediene den Schieberegler. Welche Veränderungen bewirkt der Faktor a an der quadratischen Funktion im Hinblick auf die Normalparabel?


Lückentext! - Ordne die richtigen Begriffe zu:

Der Vorfaktor a führt zu einer Streckung oder Stauchung der Normalparabel in Richtung der y-Achse.
Es findet jedoch keine Streckung oder Stauchung statt, wenn der Wert von a Eins beträgt, denn dann ist
f(x) = 1x² = x² identisch zur Normalparabel.
Ist a größer 1, so ist der Graph enger oder gestreckter als die Normalparabel.
Ist a hingegen kleiner 1, so ist der Graph weiter oder gestauchter als die Normalparabel.
Weiterhin gilt: Die quadratische Funktion f(x) = ax² ist nach oben geöffnet und der Scheitelpunkt S ist tiefster Punkt mit den Koordinaten (0\!\,|\!\,0).


Nuvola apps kig.png   Merke

Für die quadratische Funktion f(x)= a\cdot mit dem positiven Faktor a gilt:

  • Sie entsteht aus der Normalparabel durch eine Streckung oder Stauchung in Richtung der y-Achse
  • Für a = 1 gilt: Identisch zur Normalparabel, denn f(x)= 1\cdot=
  • Für a > 0 gilt:
    • Der Graph ist nach oben geöffnet
    • Scheitelpunkt S ist tiefster Punkt und liegt im Ursprung S(0\!\,|\!\,0)
    • Für a > 1 ist der Graph enger/gestreckter als die Normalparabel
    • Für a < 1 ist der Graph weiter/gestauchter als die Normalparabel