Die quadratische Funktion der Form f(x) = ax²

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
Mathematik-digital Pfeil-3d.png
Lernpfad

Die Quadratische Funktion der Form f(x)=ax²


In diesem Lernpfad lernst du die quadratische Funktion mit dem Vorfaktor a kennen! Bearbeite den unten aufgeführten Lernpfad!

  • Auswirkungen des Vorfaktors auf die Parabel für den positiven Parameter a
  • Auswirkungen des Vorfaktors auf die Parabel für den negativen Parameter a
  • Auswirkungen des Vorfaktors a auf einen Blick
  • Aufstellen der Funktionsgleichung
  • Aufgaben zum Einüben der quadratischen Funktion f(x)=ax²


Wie schon am Ende der Lerneinheit „Normalparabel“ angekündigt, werden wir die Normalparabel nun um einen Parameter erweitern.

Es kommt jetzt der Parameter a als „Vorfaktor“ hinzu, wodurch folgende Funktionsgleichung entsteht:

                                            f(x)= a\cdot



STATION 1: Auswirkungen des Vorfaktors auf die Parabel für den positiven Parameter a


Bearbeite das folgende Arbeitsblatt:

Quadratische Funktion f(x)=ax2 Hinweise, Aufgabe und Lückentext:

Hinweise:
* In der Grafik ist die Normalparabel schwarz eingezeichnet und die von a abhängige quadratische Funktion blau
* Bediene den roten Schieberegler mit der linken Maustaste, er verändert den Wert von a
* Ziehe im Lückentext die möglichen Lösungen mit gehaltener linker Maustaste in die richtigen Felder


Aufgabe:
Bediene den Schieberegler. Welche Veränderungen bewirkt der Faktor a an der quadratischen Funktion im Hinblick auf die Normalparabel?


Lückentext! - Ordne die richtigen Begriffe zu:

Der Vorfaktor a führt zu einer Streckung oder Stauchung der Normalparabel in y-Richtung.
Es findet jedoch keine Streckung oder Stauchung statt, wenn der Wert von a Eins beträgt, denn dann ist
f(x) = 1x² = x² identisch zur Normalparabel.
Ist a größer 1, so ist der Graph im Vergleich zur Normalparabel gestreckt.
Ist a hingegen kleiner 1, so nennt man den Graph gestaucht.
Außerdem ist die quadratische Funktion f(x) = ax² nach oben geöffnet und der Scheitelpunkt S ist tiefster Punkt mit den Koordinaten (0\!\,|\!\,0).


Nuvola apps kig.png   Merke

Für die quadratische Funktion f(x)= a\cdot mit dem positiven Faktor a gilt:

  • Sie entsteht aus der Normalparabel durch eine Streckung oder Stauchung in y-Richtung
  • Für a = 1 gilt: Identisch zur Normalparabel, denn f(x)= 1\cdot=
  • Für a > 0 gilt:
    • Der Graph ist nach oben geöffnet
    • Scheitelpunkt S ist tiefster Punkt und liegt im Ursprung S(0\!\,|\!\,0)
    • Für a > 1 ist der Graph im Vergleich zur Normalparabel gestreckt
    • Für a < 1 ist der Graph im Vergleich zur Normalparabel gestaucht


Nach dem wir den Fall für den positiven Vorfaktor a untersucht haben, schauen wir uns jetzt an, was passiert, wenn der Parameter a negativ wird.



STATION 2: Auswirkungen des Vorfaktors auf die Parabel für den negativen Parameter a


Bearbeite das folgende Quiz und lerne die Auswirkungen kennen, wenn der Parameter a negativ wird!


Quadratische Funktion f(x) = ax², für positiven und negativen Parameter a: Aufgabe und Quiz:

Aufgabe:

Bediene wieder den Schieberegler. Welche Veränderungen bewirkt der Faktor a, wenn er negativ wird?

Quiz:

Wie ist die Parabel geöffnet für a < 0? (!gar nicht) (!nach oben) (nach unten)

Welche Aussage ist richtig? (!Es gibt keinen Scheitelpunkt) (!Der Scheitelpunkt S liegt im Ursprung und ist tiefster Punkt) (Der Scheitelpunkt S liegt im Ursprung und ist höchster Punkt)

Was bewirkt der negative Vorfaktor a? (!Eine Streckung) (!Eine Stauchung) (Eine Streckung oder Stauchung)

Was passiert wenn der Vorfaktor a = -1 ist? (Es liegt die an der x-Achse gespielte Normalparabel vor) (!Die Parabel ist nach oben geöffnet) (!Die Parabel ist gestaucht)

Für welche negativen Werte von a, ist der an der x-Achse gespiegelte Graph gestreckt? (!für a < -0,5) (!für a > -1) (für a < -1)

Für welche negativen Werte von a, ist der an der x-Achse gespiegelte Graph gestaucht? (!für a > -2) (für 0 > a > -1) (!für -2 < a < 0)


Nuvola apps kig.png   Merke

Für die quadratische Funktion f(x)= a\cdot mit dem negativen Faktor a gilt:

  • Sie entsteht aus der Spiegelung an der x-Achse sowie durch eine Streckung oder Stauchung in y-Richtung
  • Für a = -1 gilt: Kongruente Normalparabel nach unten geöffnet; f(x)=-1\cdot= -x²
  • Für a < 0 gilt:
    • Der Graph ist nach unten geöffnet
    • Scheitelpunkt S ist höchster Punkt und liegt im Ursprung S(0\!\,|\!\,0)
    • Für a < -1 ist der Graph im Vergleich zur Normalparabel gestreckt
    • Für a > -1 ist der Graph im Vergleich zur Normalparabel gestaucht




STATION 3: Auswirkungen des Vorfaktors a auf einen Blick


Da das nun einige Eigenschaften sowohl für den positiven als auch für den negativen Vorfaktor a waren, wollen wir diese mal zusammenfassen. Dabei soll dir die folgende Grafik helfen. Du wirst feststellen, es ist gar nicht so schwer!!


OriginalbildParametera.jpg
OriginalbildParametera1.jpg OriginalbildParametera4.jpg OriginalbildParametera7.jpg
OriginalbildParametera2.jpg OriginalbildParametera5.jpg OriginalbildParametera8.jpg
OriginalbildParametera3.jpg OriginalbildParametera6.jpg OriginalbildParametera9.jpg



Normalparabel


Aufgabe:

Versuche mit Hilfe der Grafik und deinem bisherigen Wissen die richtigen Kombinationen zu finden!


Vorgabe Passendes Puzzleteil
1. Vorfaktor a ist negativ Nach unten geöffnete Normalparabel
2. a < -1 Graph ist gestreckt
3. Scheitelpunkt S für negativen Parameter a Scheitelpunkt ist höchster Punkt und liegt im Ursprung [0, 0]
4. 0 > a > -1 Graph ist gestaucht
5. Vorfaktor a ist positiv Nach oben geöffnete Normalparabel
6. 0 < a < 1 Graph ist gestaucht
7. Scheitelpunkt S für positiven Parameter a Scheitelpunkt ist tiefster Punkt und liegt im Ursprung [0, 0]
8. a > 1 Graph ist gestreckt
9. Der Vorfaktor a bewirkt eine… Streckung oder Stauchung der Normalparabel






















STATION 4: Aufstellen der Funktionsgleichung



Bisher hast du den Wert des Vorfaktors a an der Grafik ablesen können. Nun wollen wir mal schauen, wie man anhand eines Graphen, den Parameter a bestimmt. Wir betrachten hierfür zunächst den Spezialfall, dass die Parabel weder in x-Richtung noch in y-Richtung verschoben wird.

Bearbeite die folgende Aufgabe und versuche die Vorgehensweise zum Bestimmen des Parameters a zu erkennen.

Quadratische Funktion f(x) = ax², für positiven und negativen Parameter a: Hinweis und Aufgaben:

1. Gehe vom Scheitelpunkt aus eine Einheit in x-Richtung nach rechts oder links.

Wie viele Einheiten musst du in y-Richtung gehen um die Parabelkurve zu erreichen? (!2) (1) (!3)


2. Bediene nun den Schieberegler und stelle für a = 2 ein. Gehe genauso vor wie in der Aufgabe davor.

Um wie viele Einheiten muss man nun in y-Richtung gehen? (!3) (2) (!4)


3. Erkennst du schon ein Muster? Versuche folgendes Quiz zu lösen:

Wenn man vom Scheitelpunkt aus eine Einheit nach rechts und 4 Einheiten nach oben geht, dann hat der Parameter den Wert: (!1) (!2) (!)3 (4)



4. Stelle nun den Schieberegler auf den Wert a = -2.

Funktioniert das Ablesen des Parameters a an der Grafik genauso, wie bei positiven Werten von a? (!Nein) (JA)



5. Man geht vom Scheitelpunkt aus eine Einheit nach rechts und zwei Einheiten nach unten!


Wie lautet der Wert vom Parameter a?? (!1) (-2) (!2)



Nuvola apps kig.png   Merke

Anleitung zur Bestimmung des Parameters a:

  • Beginne beim Scheitelpunkt

→ Gehe eine Einheit nach rechts oder links auf der x-Achse
→ Bestimme die Anzahl der Einheiten nach oben oder unten bis zur Parabelkurve
→ Die Anzahl der Einheiten gibt den Wert vom Parameter a an

  • Hat man die Einheiten nach oben abgezählt, so ist der Wert von a positiv
  • Hat man die Einheiten nach unten abgezählt, so ist der Wert von a negativ

Um zu überprüfen, ob du die Vorgehensweise zum Finden des Parameters a verstanden hast, versuche die nächste Übung zu lösen.


Übung:

Bestimme die Funktionsgleichung wie gerade erlernt!

Ordne Bilder und Funktionsgleichungen richtig zu!

Parabel1.jpg Parabel2.jpg Parabel3.jpg Parabel4.jpg Parabel5.jpg
y = 0,5x2 y = 0x2 y = 2x2 y = -4x2 y = -0,5x2




















Da wir uns bis jetzt nur einen Spezialfall angeschaut haben, bestimmen wir nun den Parameter a, wenn die Parabel in der Ebene verschoben wird.

Löse dafür die nächste Aufgabe:


Aufgabe:

Betrachte die folgenden Graphen. Ordne dem jeweiligen Graphen den richtigen Parameter a zu. Den Parameter a bestimmt man genauso wie Anleitung beschrieben.

Hinweis: Achte darauf vom Scheitelpunkt zu starten!

Parametera1.png Parametera2.png Parametera3.png Parametera4.png Parametera5.png
a = 0,5 a = 2 a = -3 a = -0,5 a = 1,52






















STATION 5: Aufgaben zum Einüben der quadratischen Funktion f(x)=ax²


1. Aufgabe:

Für diese Aufgabe hast du eine Parabel aus dem Alltag vorgegeben. Du siehst hier einen Ausschnitt einer Kirche und die Parabelform die hier vorkommt, sie ist schwarz eingezeichnet. Stelle hierfür eine Funktionsgleichung auf:


Bogen.jpg


Lösung:

- Deine Lösung für a sollte ungefähr -0,1 betragen, damit ergibt sich die Funktionsgleichung: f(x)=-0,1x2
- Hattest du Probleme mit dem Finden des Parameters a, dann geh nochmal zurück zu Station 4



2. Aufgabe - KNIFFELAUFGABE:

Nachdem du nun weißt wie man am Graphen die Funktionsvorschrift abliest, fällt es dir auch sicher auch nicht schwer einen Graphen selbst zu zeichnen, von dem du die Funktionsvorschrift kennst.

Nimm dir ein Blatt Papier und zeichne die Graphen für folgende Funktionsvorschriften:

a) f(x) = 3x²

b) g(x) = -2x²


Hilfe:
Falls du nicht weißt was du machen sollst, kannst du dir hier eine Hilfe holen!

- Gebe dir einen x-Wert in der Gleichung vor und finde den dazugehörigen y-Wert. z.B. für x = 1 ist y = 3\cdot(1)² = 3 - Suche mehrere Punkte und verbinde diese


Lösung:

Nachdem man sich mehrere Koordinaten errechnet hat, kann man diese ins Koordinatensystem eintragen und die Punkte verbinden.
LösungKniffelaufgabe2Station5.jpg



3. Aufgabe:

Die Funktion f hat die Gleichung f(x) = ax². Bestimme den Faktor a wenn der Graph f durch den Punkt (-1,2\!\,|\!\,-1,44) verläuft

Tipp! Ähnlich zur 2. Aufgabe


Lösung:


f(x)=ax2 und P (-1,2\!\,|\!\,-1,44)

→ -1,44=a\cdot(-1,2)2

Umstellen nach a ergibt: a=\frac{-1,44}{(-1,22)^2}

→ a=1



4. Aufgabe:

Ein Junge spuckt von einer Brücke und misst die Zeit und den zugehörigen Weg wie in der Tabelle dargestellt.
Dabei ist der x-Wert die Strecke und der y-Wert ist die Zeit.
Stelle die Funktionsvorschrift in der Form f(x) = ax² auf.

Wertetabelle-Aufgabe4.jpg


Lösung:


Man nimmt sich einen beliebigen Punkt, z.B. P (1,5\!\,|\!\,13,5) und berechnet den Parameter a:

13,5=a\cdot(1,5)2

→ a=6

→ f(x)=6\cdotx2


Geschafft!

Damit hast du den Lernpfad erfolgreich beendet.

Im nächsten Lernpfad wirst du weitere Parameter kennen lernen.

Viel Spaß!