Höhen im Dreieck

Aus DMUW-Wiki
Version vom 14. Juli 2009, 09:40 Uhr von Anja Ebert (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche

Höhen im Dreieck



Auch hier darfst Du wieder konstruieren.



Öffne wieder die Geogebra Datei durch Klick auf den Button. Konstruiere eine Höhe im dem vorgegebenen Dreieck, nach folgender Aufgabenstellung:
  1. Zeichne vom Punkt C aus eine senkrechte Gerade zur gegenüberliegenden Seite c des Dreiecks.
  2. Schneide wieder diese Gerade mit der Seite c.
  3. Blende die Gerade aus!
  4. Konstruiere eine Strecke zwischen dem erhaltenen Schnittpunkt und der Ecke C.


Sehr schön! Was Du konstruiert hast ist eine Höhe des Dreiecks vom Eckpunkt C aus, auf die gegenüberliegende Seite.

5. Bewege den Eckpunkt C nach Links und Rechts. Was passiert mit der Höhe?


Bewegt man den Eckpunkt C so weit, dass ein Basiswinkel (nicht der Winkel am Eckpunkt C) größer als 90° wird, so liegt die Höhe außerhalb des Dreiecks! Dies ist in stumpfwinkligen Dreiecken der Fall!


So löst man das Problem:
  1. Konstruiere eine Gerade durch A und B
  2. Zeichne eine Senkrechte vom Punkt C zu dieser Geraden!
  3. Schneide diese Senkrechte Gerade mit der Geraden durch AB. Blende die Senkrechte Gerade wieder aus.
  4. Verbinde den erhaltenen Schnittpunkt mit C


Was Du nun konstruiert hast, ist wieder eine Höhe vom Eckpunkt C aus. Doch diese kann auch außerhalb liegen!! Teste dies durch Bewegen von C!!



Zusammenfassung: Höhen im Dreieck



Auch die Eigenschaften der Höhen im Dreieck solltest du wissen. Daher wurden sie hier zusammengefasst. Wenn Du möchtest, kannst Du den Merkkasten in Dein Heft übrtragen.


Ebert MotivatorMerke.jpg
  • Die Höhe im Dreieck ist der Abstand von einem Eckpunkt des Dreiecks zur gegenüberliegenden Seite.
  • Die Punkte D,E,F nennt man Höhenfußpunkte
Beispiel:
Ebert HöheDreieck.jpg


Hier siehst Du eine Tabelle mit den Bezeichnungen für das Dreieck aus dem obigen Bild.
Füge die passenden Bezeichnungen in der Tabelle ein
Grundlinien Länge der Grundlinien Höhen zu den Grundlinien Länge der Höhen
[AB] c [CE] hc
[BC] a [AD] ha
[AC] b [BF] hb



In der Konstruktionsaufgabe hast Du einen Spezialfall Kennen gelernt: Im stumpfwinkligen Dreieck liegen zwei Höhen außerhalb des Dreiecks. Die Höhe ist hier der Abstand vom Eckpunkt zur Geraden durch die beiden anderen Eckpunkte des Dreiecks.

Ebert SpezialfallHöhenDreieck.jpg


Die Höhen im Dreieck schneiden sich in einem Punkt, dem Höhenschnittpunkt.




Die Flächeninhaltsformel des Dreiecks