Die Flächeninhaltsformel des Dreiecks

Aus DMUW-Wiki
Version vom 14. Juli 2009, 09:54 Uhr von Anja Ebert (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche


Mathematik scheint manchmal wie Zauberei...Warum?? Das erfährst Du im nächsten Abschnitt.


Fast wie Zauberei! Zweimal Unbekannt = Bekannt?

Wir wollen die Flächeninhaltsformel für Dreiecke herausfinden.
Doch, wie könnte man das nur machen?
In diesem Applet siehst Du das Dreieck ABC. Bearbeite die nebenstehende Aufgabenstellung.


Aufgabenstellung:
  • Ziehe am Schieberegler und beobachte, was passiert.
  • Hilft uns dieses Modell weiter, die Formel für das Dreieck zu finden?

Das Dreieck wird durch ein zweites kongruentes Dreieck zum Parallelogramm (Figur eintragen) ergänzt.

Warum ist dieses zweite Dreieck kongruent zum ersten?

Das Dreieck geht durch Drehung um den Mittelpunkt aus dem ersten Dreieck hervor. Dies ist eine Kongruenz-abbildung.

Berechne den Flächeninhalt des Parallelogramms

Der Flächeninhalt des Parallelogramms beträgt 12 (cm²)

Wie groß ist der Flächeninhalt eines Dreiecks?

Der Flächeninhalt eines Dreiecks beträgt 6 (cm²)


Übungsaufgaben

Die Flächeninhaltsformel des Dreiecks

Leite die allgemeine Flächeninhaltsformel für Dreiecke her!
Bedenke nochmals, welche Flächeninhaltsformel Du vor Kurzem erst Kennen gelernt hast

Aufgabenstellung: Ergänze die fehlenden Felder in der Rechnung.

Gesucht: FDreieck = ??

FParallelogramm = g \cdot h
FParallelogramm = FDreieck + FDreieck
FParallelogramm = 2 \cdot FDreieck
g \cdot h = 2 \cdot FDreieck
{1 \over 2} \cdot g \cdot h = FDreieck


Super! Du hast die Flächeninhaltsformel für Dreiecke gefunden.



  • Begründe mit einem Prinzip, dass Du im ersten Lernpfad kennen gelernt hast, warum man die Formel auf diesem Wege herleiten kann. Gehe hier vom Flächeninhalt des Parallelogramms aus.
  • Fülle den folgenden Lückentext aus.

Zerlegungsgleichheit ist das Stichwort! Die Flächeninhaltsformel für Dreiecke lässt sich herleiten, indem man ein Parallelogramm geeignet halbiert. Man halbiert dies entlang seiner Diagonalen.
Diese Halbierung zerlegt das Parallelogramm in zwei kongruente Dreiecke, die jeweils den gleichen Flächeninhalt besitzen und deren Gesamtflächeninhalt dem des Parallelogramms entspricht. Ein Dreieck ist damit halb so groß wie ein Parallelogramm mit derselben Grundseite und Höhe .



Zusammenfassung: Flächeninhalt des Dreiecks