Shoes and Socks
Aus DMUW-Wiki
Version vom 26. November 2018, 15:40 Uhr von Kilian Schoeller (Diskussion | Beiträge)
Aussage
Sei eine Gruppe (d.h. abgeschlossene zweistellige Verknüpfung, Assoziativität, neutrales Element, inverse Elemente), dann gilt für alle
:
Beweis
1. Doppelte Invertierung eines Gruppenelements
2. Shoes and Socks
Aspekte
- Wir können die beiden Aussagen auch nachrechnen:
- Wir haben gezeigt, dass
, d.h.
ist ein linksinverses Element von
und
ist ein rechtsinverses Element von
.
- Wir wissen mit der Aussage über die Abschwächung der Gruppendefinition, dass in einer Gruppe die Begriffe rechts- und :linksinvers zusammenfallen. Sobald das eine gegeben ist, dann ist auch das andere gegeben.
- Genauso wissen wir mit der Aussage über die Eindeutigkeit der inversen Elemente in einer Gruppe, dass das Gruppenelement
das einzige zu
inverse Element ist.
- Genauso gilt:
- Wir können die Aussage so lesen:
ist linksinvers zu
. Genauso gilt aber auch:
ist rechtsinvers zu
.