Grundlagen der Zerlegungsgleichheit von Figuren
Grundlagen der Zerlegungsgleichheit von Figuren
Auf dieser Seite lernst Du die Eigenschaften der Zerlegungsgleichheit von Figuren kennen.
Bearbeite die Aufgaben sorgfältig!
Nicht mogeln...schaue erst die Lösungen an, wenn du die Aufgaben selbstsändig bearbeitet hast!
Denn nur so lernst du am Besten!
1.Station Wiederholung des Kongruenzbegriffes
- Weißt Du noch was man unter 'Kongruenz von Figuren versteht??
- Eine Wiederholung kann sicher nicht schaden.
Teste Dein Wissen!
- Ein anderes Wort für Kongruenz ist Deckungs-gleichheit
- Hinweis: Kongruente Figuren kann man zur Deckung bringen
Aufgabe: Kongruente Dreiecke
- Findest Du alle Dreiecke, die zum Dreieck A kongruent sind?
''Gib die Buchstaben an.''
0-1 Punkt: Versuche die Aufgabe noch einmal.
2 Punkte: Sehr gut gemacht!
- War Deine Lösung richtig?
2. Station: Wie erzeugt man kongruente Figuren?
|
3.Station: Das sollest Du also wissen
|
4.Station: Wofür können wir die Kongruenz von Figuren gebrauchen?
- Du kennst sicher ein paar Anwendungsbeispiele wofür man die Eigenschaften der man die Kongruenz von Figuren nutzen kann.
- Dazu gehört zum Beispiel die Konstruktion von Dreiecken, wofür man die Kongruenzsätze benötigt. Kennst Du noch alle davon?
- Ordne die richtige Abkürzung der Beschreibung zu!
Zwei Dreiecke, die in ihren drei Seitenlängen übereinstimmen, sind kongruent: SSS-Satz
Zwei Dreiecke, die in einer Seitenlänge und in den dieser Seite anliegenden Winkeln übereinstimmen, sind kongruent: WSW-Satz
Zwei Dreiecke, die in zwei Seitenlängen und in dem eingeschlossenen Winkel übereinstimmen, sind kongruent: SWS-Satz
Zwei Dreiecke, die in zwei Seitenlängen und in jenem Winkel übereinstimmen, der der längeren Seite gegenüberliegt, sind kongruent: SsW-Satz
- Prima! Das war schon die erste Seite des Lernpfads. Das ging ja fix.'
- Im dem nächsten Abschnitt lernst Du ein weiteres Anwendungsbeispiel für die Kongruenz kennen
- Hier geht es weiter:
- Prima! Das war schon die erste Seite des Lernpfads. Das ging ja fix.'