Station 2

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche

Station 2

Motivation Hatos 3.bmp

Wie du siehst kann man ein Lineares Gleichungssystem grafisch lösen. Du musst also nur die beiden Geraden, die zu den beiden Gleichungen gehören in ein Koordinatensystem einzeichnen und den Schnittpunkt ablesen.

Versuche nun das folgende Lineare Gleichungssystem zu lösen:


(I) y + 3 = 2x und (II) y + x = 3


1. Schritt: Zuerst musst du die beiden Gleichungen nach y auflösen, damit du Sie einzeichnen kannst!

Wie lautet die Gleichung (I) nach y aufgelöst? (!y= 2x+3) (y= 2x-3) (!y= 1/2x)

Wie lautet die Gleichung (II) nach y aufgelöst? (y= -x+3) (!y= x+3) (!y= -x-3)

2. Schritt: Nun kann man die Geraden in ein Koordinatensystem einzeichnen.

Lernpfad 1 Aufgabe 2 Hatos.png

Die rote Gerade gehört zu folgender Gleichung: (!y = - x + 3) (y = 2x - 3)

Die blaue Gerade gehört zu folgender Gleichung: (y = - x + 3) (!y = 2x - 3)

Wie lautet der Schnittpunkt der beiden Geraden? (!1/2) (2/1) (!3/0)

3. Schritt: Du kannst die Probe machen, indem du die Koordinaten des Schnittpunktes in deine beiden Anfangsgleichungen einsetzt!

Gleichung 1: y + 3 = 2x

          1 + 3 = 4 
          4 = 4 

Disese Aussage ist wahr

Gleichung 2: y + x = 3

          1 + 2 = 3
          3 = 3   

Diese Aussage ist wahr

Also lautet die Lösung dieses Linearen Gleichungssystmes

L = {(2/1)}

Motivation Hatos 4.bmp



Hier gehts zur 3. Station

Hier gehts zurück zur 1. Station