Lösungsansatz

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche





Aufgabe: Berechne die Mantelfläche


Die Mantelfläche setzt sich aus den Dreiecken zusammen, die die Grundkanten
jeweils mit zwei anliegenden Seitenkanten einschließen. Sie besitzen alle die gleiche Spitze S.
Um die Dreiecksflächen berechnen zu können, benötigst du die Dreieckshöhen.

In diesem Lösungsansatz erfährst du, wie man die Höhe des Dreiecks BCS errechnen kann:

1. Zunächst legst du den letzten Schalter (blau) oben im Applet um, um das nötige Stützdreieck MFS anzuzeigen.

2. Als nächstes betrachten wir das Dreieck BCM:

Rechnungemr1.jpg

Nun berechnest du den Winkel Beta1em.jpg im rechtwinkligen Dreieck BCM wiefolgt:

Rechnunga1.jpg

3. Nun berechnest du die Höhe Mfem.jpg des Dreiecks BCM. Dazu betrachten wir das Teildreieck BFM genauer:

Rechnungemr2.jpg

Die Hypothenuse Mbem.jpg = 3,5cm ist gegeben und die Seite MF ist die Gegenkathete zum Winkel Beta1em.jpg, also rechnest du MF wiefolgt:


Rechnunga2.jpg

4. Nun wird letzlich noch das eingeblendete Stützdreieck MFS genauer betrachtet:

Rechnungemr4.jpg

In diesem rechtwinkligen Dreieck entspricht die Hypothenuse der gesuchten Dreieckshöhe Sfem.jpg.
Mit Hilfe des Satz des Pythagoras sieht die Rechnung folgendermaßen aus:

Rechnunga3.jpg


Damit lässt sich nun die Fläche des Dreiecks BCS berechnen.
Gehe nun zurück. Fahre nun analog selbständig mit der Berechnung der Mantelfläche fort!