Eigenschaften der Achsenspiegelung

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche


Mathematik-digital Pfeil-3d.png
Lernpfad

Teil 2: Eigenschaften der Achsenspiegelung

  • Zeitbedarf: 45 Min.
  • Material: dein Heft, Stifte und ein Geodreieck
Spiegel7.jpg

Im Teil 1 des Lernpfads hast du ja schon einige grundlegende Dinge über das Thema Achsenspiegelung gelernt. Im zweiten Teil soll es jetzt um die Eigenschaften der Achsenspiegelung gehen.

Schreibe dir wieder alle Merksätze in dein Heft!

1.Station: Besondere Punkte und Geraden

1. Aufgabe

Du siehst hier eine Achsenspiegelung bei der ein Punkt des Urdreiecks auf der Spiegelachse liegt. Das heißt Urpunkt und Bildpunkt sind gleich, B=B'.

Fixpunkt.png

Finde die unverdrehte Lösung zu den verdrehten Wörtern! Achte dabei auch auf die richtige Schreibweise.

Liegt ein Punkt bei einer Achsenspiegelung genau auf der Spiegelachse, nennt man einen solchen Punkt (fkxitpnu).

Dabei wird jeder Fixpunkt auf sich selbst (blbiagedte). Alle Punkte auf der (ahelpgeesics) sind Fixpunkte.

Daher ist die Spiegelachse eine (naekdxtgpeuirf).

Das war ganz schön schwierig, oder? Wenn du nicht alle Wörter herausgefunden hast, sieh dir den Merksatz an!


Hier findest du den Merksatz! [Anzeigen]

2.Station: Wichtige Eigenschaften der Achsenspiegelung

Jetzt wollen wir uns die besonderen Eigenschaften der Achsenspiegelung anschauen. Es gibt fünf Eigenschaften, die du kennen solltest, um eine Achsenspiegelung richtig ausführen zu können! Also los geht´s!

Vielleicht helfen dir die folgenden Applets die Eigenschaften herauszufinden.

Eigenschaften der Achsenspiegelung

Ziehe am Mittelpunkt M!

Bewege die Gerade g!

Ziehe am Punkt B!



2. Aufgabe

Versuche die Wörter richtig zuzuordnen. Du musst dabei wieder mit der linken Maustaste an den Wörtern ziehen und sie fallen lassen, wenn die Lücke rot wird.

Eine Gerade wird bei einer Achsenspiegelung wieder auf eine Gerade abgebildet, d.h. die Achsenspiegelung ist                     . Auch das Spiegelbild eines Kreises ist ein Kreis, somit ist die Achsenspiegelung auch                     . Alle Strecken werden auf Strecken der gleichen Länge abgebildet. Die Achsenspiegelung ist daher                     . Ähnlich verhält es sich bei der Abbildung von Winkeln. Ein Winkel wird wieder auf einen Winkel mit unverändertem Maß abgebildet. Man nennt die Achsenspiegelung daher auch                     . Die letzte Eigenschaft bezieht sich auf parallele Geraden. Denn bei einer Achsenspiegelung ist das Bild einer Parallele zur Spiegelachse auch eine parallele Gerade. Das heißt die Achsenspiegelung ist auch                     .

winkeltreugeradentreuparallelentreulängentreukreistreu

Jetzt kennst du also alle Eigenschaften der Achsenspiegelung! Du findest sie auch nochmal in einem Merksatz.


Hier findest du den Merksatz! [Anzeigen]


3. Aufgabe

Mal sehen, was du gelernt hast. Beantworte folgende Fragen zu den Eigenschaften der Achsenspiegelung. Es können auch mehrere Antworten richtig sein.

Eine Strecke mit 5cm wird durch eine Achsenspiegelung abgebildet. Wie lang ist sie nach der Spiegelung?

Eine Achenspiegelung ist ...

Eine Parallele zur Spiegelachse wird auf eine ... abgebildet.

prüfen!

Das war doch gar nicht so schwer, oder?


4. Aufgabe
Finde heraus, welche der Eigenschaften in diesem Bild bei der Spiegelung nicht eingehalten wurden! Wie viele Fehler entdeckst du?

Blumen.png

Hier geht`s zur Lösung! [Anzeigen]


Spiegel8.jpg

Mit Hilfe der folgenden Applets kannst du entdecken, worum es bei den zwei Sonderfällen geht.

Sonderfälle der Achsenspiegelung

Ziehe am Mittelpunkt M!

Bewege den Punkt N!

5. Aufgabe

Finde die unverdrehte Lösung zu den verdrehten Wörtern! Achte auf Rechtschreibfehler!

Liegt der Mittelpunkt eines Kreises auf der Spiegelachse, so wird er auf sich selbst (teaedilbgb).

Daher nennt man ihn (fxskiire). Steht eine Gerade (reehksntc) auf der Spiegelachse, wird sie bei einer Achsenspiegelung auf

sich selbst abgebildet. Sie heißt daher (fegedaxri).

Das war die letzte Aufgabe für diese Station. Bestimmt konntest du sie lösen. Super!

3.Station: Übungen

Jetzt wollen wir mal sehen, was du alles gelernt hast! Kannst du dein Wissen in den folgenden Aufgaben anwenden?

Übung 1

Achsenspiegelung
Finde die Paare aus je einem Bild und dem dazu passenden Begriff.

Fixgerade.png Längentreue StreckeAB.png Kreis1.png Winkel.png Fixgerade Fixkreis.png Parallele.png Fixkreis Fixpunkt Kreistreue Fixpunkt.png Winkeltreue Parallelentreue

Das war leicht, oder?


Übung 2

Zuordnung
Ordne die Begriffe dem richtigen Oberbegriff zu. Ziehe mit der linken Maustaste an den Begriffen und lasse sie fallen, wenn der Hintergrund rot wird.

Eigenschaften der Achsenspiegelung

Zur Abbildung gehörende Elemente

Wörter mit gleicher Bedeutung

Fixelemente der Achsenspiegelung

KreistreuedeckungsgleichFixkreisUrpunktFixpunktgeradeParallelentreueBildfigurLängentreueGeradentreueUrfigurkongruentSpiegelachseFixgeradeWinkeltreueFixpunktBildpunkt

Ich denke, du kennst jetzt alle wichtigen Begriffe der Achsenspiegelung!


Zusatzaufgabe
Welche der Geraden auf dem Bild ist die Spiegelachse?

Geraden LauraKlaus.png

Lösung! [Anzeigen]


Spiegel10.jpg