Skalarprodukt: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: <div style="float:right;background:#fff;margin-left:5px; padding:0px; border:1px solid #aaaaaa; width:16em"> <div style="font-size:100%; line-height:120%; padding: .5em...)
 
K
 
(20 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
<div style="float:right;background:#fff;margin-left:5px; padding:0px; border:1px solid #aaaaaa; width:16em">
+
{{Vorlage:Trigonometrie}}
<div style="font-size:100%; line-height:120%; padding: .5em; background-color:#FFD700; border-bottom:1px solid #aaaaaa;">
+
[[Bild:Vista-Community Help.png|right|25px]] '''Lernpfad-Navigator'''
+
</div>
+
<div style="background:#fff;padding: .5em; padding-bottom: 1em; font-size: 90%;">
+
 
+
*[[Potenzen und Potenzfunktionen]]
+
*[[Exponential- & Logarithmusfunktion]]
+
*[[Trigonometrie]]
+
**[[Trigonometrische Funktionen]]
+
**[[Berechnungen in Dreiecken]]
+
**[[Skalarprodukt]]
+
**[[Exkurs: Figuren und ihre Eigenschaften]]
+
*[[Abbildungen im Koordinatensystem]]
+
</div>
+
<div style="font-size:90%; padding: .5em; background-color:#FFD700; border-top:1px solid #aaaaaa;">
+
[[LERNPFAD]]
+
</div></div><noinclude>[[Kategorie:Vorlage:Benutzerbausteine|.]]
+
[[Kategorie:Vorlage:Navigationsblöcke|Erste Hilfe]]</noinclude>
+
  
 
==Trigonometrie==  
 
==Trigonometrie==  
 
{| border="0"
 
{| border="0"
 
! width="12" style="background-color:#FFD700;"|
 
! width="12" style="background-color:#FFD700;"|
| width="1000" style="text-align:left"| '''Arbeitsauftrag'''
+
| width="900" style="text-align:left"| '''Arbeitsauftrag'''
 
--------
 
--------
 
Als erstes schauen wir uns an, welche Bedeutung Sinus, Cosinus und Tangens am Einheitskreis haben. Anschließend wird der Umgang mit diesen Werkzeugen zur Winkelberechnung erklärt. Klick dich durch!
 
Als erstes schauen wir uns an, welche Bedeutung Sinus, Cosinus und Tangens am Einheitskreis haben. Anschließend wird der Umgang mit diesen Werkzeugen zur Winkelberechnung erklärt. Klick dich durch!
 
|}
 
|}
{{#slideshare:skalarprodukt-100603045003-phpapp01}}
 
 
 
<poem>
 
<poem>
<ggb_applet height="600" width="1000" showMenuBar="true" showResetIcon="true" filename="Peter Fischer_Einheitskreis.ggb" />
+
{{#slideshare:skalarprodukt-100817025857-phpapp02}}
  
<span style="color:#FFFFFF"><big>Leerzeile</big></span>
+
Falls die Präsentation nicht geladen werden kann, kannst du sie auch als PDF anschauen. Einfach anklicken.
</poem>
+
{{pdf|Peter Fischer_Skalarprodukt.pdf|Skalarprodukt}}
  
 +
 +
</poem>
  
 
==Aufgaben==
 
==Aufgaben==
Hier warten nun Aufgaben zu Exponentialfunktionen, diese sind auch sehr häufig in der Abschlussprüfugn zu finden!
+
Hier hast du es ebenfalls mit alten Abschlussprüfungen zu tun. Hier sind allerdings Vektoren in Abhängigkeit eines Winkels gegeben. Um Koordinaten oder Winkel zu berechenn solltest du das Skalarprodukt verwenden!
  
 
{| border="1"
 
{| border="1"
 
! width="12" style="background-color:#FFD700;"|
 
! width="12" style="background-color:#FFD700;"|
| width="1000" style="text-align:left" style="background-color:#FFEC8B;"| '''Aufgabe 1 '''
+
| width="900" style="text-align:left" style="background-color:#FFEC8B;"| '''Aufgabe 1 [[Bild:Peter_Fischer_Papier.png|40px]] '''
 
--------
 
--------
Ordne den Funktionsgleichungen ihre Graphen zu. Los geht's! 
+
Funktionale Abhängigkeit aus der ebenen Geometrie. (Abschlussprüfung 2006; Wahlteil; B2). 
 +
------------
 +
Die Pfeile <math>\vec{AB_n}={3 \cdot \cos \varphi -2 \choose 3}</math> und <math>\vec{AC_n}={2 \cdot \cos \varphi -3 \choose {\sin}^2 \varphi}</math> mit <math>\quad A(2|1)</math> spannen für <math>\varphi \in [0^\circ; 180^\circ]</math> Dreiecke <math>\quad AB_nC_n</math> auf.
 
|}
 
|}
<div class="zuordnungs-quiz">
+
 
{|  
+
{|
| <math>\quad f(x) = 0,5^{x-3}+2</math>|| [[Bild:Peter Fischer_F1.png|120px]]  
+
|[[Bild:Peter_Fischer_Applet.png|35px|''Hier ist ein Applet zur anschaulichen Darstellung'']]
|-
+
|<popup name="Applet zur anschaulichen Darstellung"> <ggb_applet height="550" width="700" showMenuBar="false" showResetIcon="true" filename="Peter Fischer_Skalarprodukt.ggb"/>
| <math>\quad f(x) = 0,1^{x+5}-3</math> || [[Bild:Peter Fischer_F2.png|120px]]  
+
</popup>
|-
+
|}
| <math>\quad f(x) = 3 \cdot 2^x-2</math> ||[[Bild:Peter Fischer_F3.png|120px]]
+
 
|-
+
{| border="1"
| <math>\quad f(x) = 1,5^{x+4}-0,5</math> || [[Bild:Peter Fischer_F4.png|120px]]
+
|Für <math>\quad \varphi =30^\circ</math> ergeben sich die Vektoren <math>\quad \vec{AB_1}</math> und <math>\quad \vec{AC_1}</math>, die einen Winkel mit dem Maß <math>\quad \alpha</math> einschließen. Berechnen sie das Maß <math>\quad \alpha</math> auf 2 Stellen gerundet.
 +
{|
 +
|[[Bild:Peter_Fischer_Tipp.png|35px|''Mori hat einen Tipp für dich'']]
 +
|<popup name="Lösung">  
 +
[[Bild:Peter_Fischer_Formelsammlung.png|40px]]
 +
* <math>\cos \alpha =\frac{\vec{AB_1} \bigodot \vec{AC_1}}{|\vec{AB_1}| \cdot |\vec{AC_1}|}</math>
 +
* <math>\cos \alpha =\frac{{0,60 \choose 3} \bigodot {-1,27 \choose 0,25}}{\sqrt{0,60^2+3^2} \cdot \sqrt{(-1,27)^2+0,25^2}}</math>
 +
* <math>\cos \alpha =\frac{0,60 \cdot (-1,27)+3 \cdot 0,25}{\sqrt{0,60^2+3^2} \cdot \sqrt{(-1,27)^2+0,25^2}}</math>
 +
* <math>\alpha=90,17^\circ</math>
 +
</popup>
 +
|}
 +
 
 +
<quiz display="simple">
 +
{
 +
| type="{}" }
 +
'''Lösung:''' <math>\quad \alpha</math>={ 90.17 _7}° (2 Nachkommastellen)
 +
</quiz>
 
|}
 
|}
</div>
 
  
 
<span style="color:#FFFFFF"><big>Leerzeile</big></span>  
 
<span style="color:#FFFFFF"><big>Leerzeile</big></span>  
  
 
{| border="1"
 
{| border="1"
! width="12" style="background-color:#FFD700;"|
+
|Berechnen Sie den Wert von <math>\quad \varphi</math>, sodass der Punkt C<sub>4</sub> auf der y-Achse liegt, und berechnen Sie die Koordinaten des Punktes C<sub>4</sub>. (<math>C_n(2\cos \varphi-1|\sin^2 \varphi+1)</math>)
| width="1000" style="text-align:left" style="background-color:#FFEC8B;"| '''Aufgabe 2 [[Bild:Peter_Fischer_Papier.png|40px]] '''
+
{|
--------
+
|[[Bild:Peter_Fischer_Tipp.png|35px|''Mori hat einen Tipp für dich'']]
Berechnungen zu Exponentialfunktionen. 
+
|<popup name="Tipp">
 +
Punkte auf der y-Achse besitzen die x-Koordinate 0!
 +
</popup>
 
|}
 
|}
 
<quiz display="simple">
 
<quiz display="simple">
 
{
 
{
 
| type="{}" }
 
| type="{}" }
Die Gleichung <math>f_1: y=7-7 \cdot 2,72^{-0,5x}</math> beschreibt welche Spannung y nach x Sekunden an einem Kondensator anliegt. Die maximale Spannung (Sättigungsspannung) ist 7V. Wie viel Prozent der Sättigungsspannung hat der Kondensator nach 2,60s erreicht? (Abschlussprüfung 2004; Aufgabengruppe A; 1.2)
+
'''Lösung:''' <math>\varphi</math>={ 60.00 _5}° und C<sub>4</sub>({ 0.00 _5}|{ 1.75 _5}) (2 Nachkommastelle,  auch bei Ergebnis 0!)
Lösung:{ 72,71 _5}%
+
</quiz>
<popup name="Tipp"> Die Zeit in die Gleichung einsetzen und y ausrechnen. Anschließend in Prozent umrechnen.
+
|}
  
Karl der Große (742-814) wurde im Jahr 800 römischer Kaiser. Angenommen er hätte in diesem Jahr einen Cent für dich angelegt auf einem Sparbuch. Du bekommst jährlich 2% Zins, der Zinsertrag bleibt auf dem Sparbuch. Wie viel Geld hättest du im Jahr 2010?
+
<span style="color:#FFFFFF"><big>Leerzeile</big></span>
<popup name="Tipp"> Benutze die Zineszinsformel <math>K=K_0 \cdot (1+\frac{p}{100})^n</math> </popup>  
+
 
Lösung: { 255 _5}Mio. € (Auf ganze Milionen gerundet)
+
{| border="1"
 +
|Im rechtwinkligen Dreieck A<sub>5</sub>C<sub>5</sub> ist die Strecke [B<sub>5</sub>C<sub>5</sub>] die Hypothenuse. Berechnen Sie den zugehörigen Wert von <math>\varphi</math>.
 +
{|
 +
|[[Bild:Peter_Fischer_Tipp.png|35px|''Mori hat einen Tipp für dich'']]
 +
|<popup name="Tipp">  
 +
Rechter Winkel zwischen 2 Vektoren -> Skalarprodukt = 0!
 +
</popup>
 +
|}
 +
<quiz display="simple">
 +
{
 +
| type="{}" }
 +
'''Lösung:''' <math>\varphi</math>={ 30.12 _5}° (2 Nachkommastelle)
 
</quiz>
 
</quiz>
 +
|}
 +
 +
<span style="color:#FFFFFF"><big>Leerzeile</big></span>
 +
  
 
<poem>
 
<poem>
'''Weiter gehts zu  [[Trigonometrische Funktionen]]'''
+
'''Weiter gehts zu  [[../Exkurs Geometrie|Exkurs: Wichtiges zur Geometrie]]'''
 
<span style="color:#FFFFFF"><big>Leerzeile</big></span>  
 
<span style="color:#FFFFFF"><big>Leerzeile</big></span>  
 
</poem>
 
</poem>
  
<div  style="background:#FFD700;text-align:center;color: #fff;font-weight:bold;font-size:125%;margin: 10px 5px 0px 0; padding: 4px 4px 4px 14px;">Potenzen und Potenzfunktionen</div>
+
<div  style="background:#FFD700;text-align:center;color: #fff;font-weight:bold;font-size:125%;margin: 10px 5px 0px 0; padding: 4px 4px 4px 14px;">Trigonometrie</div>
 
<div style="margin: 0 5px 5px 0; padding: 1em 1em 1em 1em; text-align:center; border: 1px solid :#FFD700; background-color:#f6fcfe;">
 
<div style="margin: 0 5px 5px 0; padding: 1em 1em 1em 1em; text-align:center; border: 1px solid :#FFD700; background-color:#f6fcfe;">
[[LERNPFAD]] &#124; [[Trigonometrie]] &#124; [[Trigonometrische Funktionen]] &#124;  [[Berechnungen in Dreiecken]] &#124; [[Skalarprodukt]] &#124; [[Exkurs: Figuren und ihre Eigenschaften]] </div><noinclude>
+
[[../../|LERNPFAD]] &#124; [[../../Trigonometrie|Trigonometrie]] &#124; [[../Trigonometrische Funktionen|Trigonometrische Funktionen]] &#124;  [[../Berechnungen in Dreiecken|Berechnungen in Dreiecken]] &#124; [[../Skalarprodukt|Skalarprodukt]] &#124; [[../Exkurs Geometrie|Exkurs: Wichtiges zur Geometrie]] </div>

Aktuelle Version vom 15. Oktober 2011, 11:51 Uhr

Vista-Community Help.png
Lernpfad-Navigator

LERNPFAD

Trigonometrie

Arbeitsauftrag

Als erstes schauen wir uns an, welche Bedeutung Sinus, Cosinus und Tangens am Einheitskreis haben. Anschließend wird der Umgang mit diesen Werkzeugen zur Winkelberechnung erklärt. Klick dich durch!

{{#slideshare:skalarprodukt-100817025857-phpapp02}}

Falls die Präsentation nicht geladen werden kann, kannst du sie auch als PDF anschauen. Einfach anklicken.
Pdf20.gif Skalarprodukt

Aufgaben

Hier hast du es ebenfalls mit alten Abschlussprüfungen zu tun. Hier sind allerdings Vektoren in Abhängigkeit eines Winkels gegeben. Um Koordinaten oder Winkel zu berechenn solltest du das Skalarprodukt verwenden!

Aufgabe 1 Peter Fischer Papier.png

Funktionale Abhängigkeit aus der ebenen Geometrie. (Abschlussprüfung 2006; Wahlteil; B2).


Die Pfeile \vec{AB_n}={3 \cdot \cos \varphi -2 \choose 3} und \vec{AC_n}={2 \cdot \cos \varphi -3 \choose {\sin}^2 \varphi} mit \quad A(2|1) spannen für \varphi \in [0^\circ; 180^\circ] Dreiecke \quad AB_nC_n auf.

Hier ist ein Applet zur anschaulichen Darstellung
Für \quad \varphi =30^\circ ergeben sich die Vektoren \quad \vec{AB_1} und \quad \vec{AC_1}, die einen Winkel mit dem Maß \quad \alpha einschließen. Berechnen sie das Maß \quad \alpha auf 2 Stellen gerundet.
Mori hat einen Tipp für dich

1.

Lösung: \quad \alpha=° (2 Nachkommastellen)

Punkte: 0 / 0

Leerzeile

Berechnen Sie den Wert von \quad \varphi, sodass der Punkt C4 auf der y-Achse liegt, und berechnen Sie die Koordinaten des Punktes C4. (C_n(2\cos \varphi-1|\sin^2 \varphi+1))
Mori hat einen Tipp für dich

1.

Lösung: \varphi=° und C4(|) (2 Nachkommastelle, auch bei Ergebnis 0!)

Punkte: 0 / 0

Leerzeile

Im rechtwinkligen Dreieck A5C5 ist die Strecke [B5C5] die Hypothenuse. Berechnen Sie den zugehörigen Wert von \varphi.
Mori hat einen Tipp für dich

1.

Lösung: \varphi=° (2 Nachkommastelle)

Punkte: 0 / 0

Leerzeile


Weiter gehts zu Exkurs: Wichtiges zur Geometrie
Leerzeile

Trigonometrie
LERNPFAD | Trigonometrie | Trigonometrische Funktionen | Berechnungen in Dreiecken | Skalarprodukt | Exkurs: Wichtiges zur Geometrie