Logarithmus: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
(Vorlage verwendet)
 
(11 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
<div style="float:right;background:#fff;margin-left:5px; padding:0px; border:1px solid #aaaaaa; width:16em">
+
{{Vorlage:Exponential- und Logarithmusfunktion}}
<div style="font-size:100%; line-height:120%; padding: .5em; background-color:#66CD00; border-bottom:1px solid #aaaaaa;">
+
[[Bild:Vista-Community Help.png|right|25px]] '''Lernpfad-Navigator'''
+
</div>
+
<div style="background:#fff;padding: .5em; padding-bottom: 1em; font-size: 90%;">
+
  
*[[Potenzen und Potenzfunktionen]]
+
<!--
**[[Exkurs Lineare Funktionen]]
+
==Logarithmus==-->
**[[Exkurs Quadratische Funktionen]]
+
**[[Potenzfunktionen]]
+
**[[Potenzfunktionsabbildungen]]
+
*[[Exponential- & Logarithmusfunktion]]
+
**[[Logarithmus]]
+
*[[Trigonometrie]]
+
*[[Abbildungen im Koordinatensystem]]
+
*[[Prüfungsaufgaben]]
+
</div>
+
<div style="font-size:90%; padding: .5em; background-color:#66CD00; border-top:1px solid #aaaaaa;">
+
[[LERNPFAD]]
+
</div></div><noinclude>[[Kategorie:Vorlage:Benutzerbausteine|.]]
+
[[Kategorie:Vorlage:Navigationsblöcke|Erste Hilfe]]</noinclude>
+
 
+
==Logarithmus==  
+
 
{| border="0"
 
{| border="0"
 
! width="12" style="background-color:#66CD00;"|
 
! width="12" style="background-color:#66CD00;"|
Zeile 32: Zeile 13:
 
|}
 
|}
 
<poem>
 
<poem>
{{#slideshare:logarithmusfunktion-100609153351-phpapp01}}
+
{{#slideshare:logarithmusfunktion-100817023437-phpapp01}}
  
 
Falls die Präsentation nicht geladen werden kann, kannst du sie auch als PDF anschauen. Einfach anklicken.
 
Falls die Präsentation nicht geladen werden kann, kannst du sie auch als PDF anschauen. Einfach anklicken.
{{pdf|Peter Fischer_Logarithmusfunktion.pdf.pdf|Logarithmus}}
+
{{pdf|Peter Fischer_Logarithmusfunktion.pdf|Logarithmus}}
  
  
Zeile 61: Zeile 42:
 
{
 
{
 
| type="{}" }
 
| type="{}" }
'''Lösung:''' k = { 5,54 _5}<math>\frac{km}{s}</math> (2 Nachkommastellen)
+
'''Lösung:''' k = { 5.54 _5}<math>\frac{km}{s}</math> (2 Nachkommastellen)
 
</quiz>
 
</quiz>
 
{|
 
{|
Zeile 78: Zeile 59:
 
{
 
{
 
| type="{}" }
 
| type="{}" }
'''Lösung:''' x = { 3,40 _5}<math>\frac{km}{s}</math> (2 Nachkommastellen)
+
'''Lösung:''' x = { 3.38 _5}<math>\frac{km}{s}</math> (2 Nachkommastellen)
 
</quiz>
 
</quiz>
 
{|
 
{|
Zeile 103: Zeile 84:
 
{
 
{
 
| type="{}" }
 
| type="{}" }
'''Lösung:''' x={ 2,20 _5}s  
+
'''Lösung:''' x={ 2.20 _5}s  
 
</quiz>
 
</quiz>
 
{|
 
{|
Zeile 119: Zeile 100:
 
{|
 
{|
 
|[[Bild:Peter_Fischer_Tipp.png|35px|''Mori hat einen Tipp für dich'']]
 
|[[Bild:Peter_Fischer_Tipp.png|35px|''Mori hat einen Tipp für dich'']]
|<popup name="Trick">  Wende auf beiden Seiten der Gleichung einen Logarithmus beliebiger, aber gleicher Basis an und verwenden die Logarithmengesetze: <math>\lg {(7 \cdot 4^{x-2})}=\lg {(25 \cdot 5^{2x+1})} </math>
+
|<popup name="Trick">  Wende auf beiden Seiten der Gleichung einen Logarithmus beliebiger, aber gleicher Basis an und verwende die Logarithmengesetze: <math>\lg {(7 \cdot 4^{x-2})}=\lg {(25 \cdot 5^{2x+1})} </math>
 
</popup>  
 
</popup>  
 
|}
 
|}
Zeile 125: Zeile 106:
 
{
 
{
 
| type="{}" }
 
| type="{}" }
Lösung: L={ 0,10 _5} (2 Nachkommastellen)
+
Lösung: <math>\mathbb{L}</math>={ 0.10 _5} (2 Nachkommastellen)
 
</quiz>
 
</quiz>
 
|}
 
|}
  
 
<poem>
 
<poem>
'''Weiter gehts zu Abschnitt III [[Trigonometrie]]'''
+
'''Weiter gehts zu Abschnitt III [[../../Trigonometrie|Trigonometrie]]'''
 
<span style="color:#FFFFFF"><big>Leerzeile</big></span>  
 
<span style="color:#FFFFFF"><big>Leerzeile</big></span>  
 
</poem>
 
</poem>
Zeile 136: Zeile 117:
 
<div  style="background:#66CD00;text-align:center;color: #fff;font-weight:bold;font-size:125%;margin: 10px 5px 0px 0; padding: 4px 4px 4px 14px;">Exponential- & Logarithmusfunktion</div>
 
<div  style="background:#66CD00;text-align:center;color: #fff;font-weight:bold;font-size:125%;margin: 10px 5px 0px 0; padding: 4px 4px 4px 14px;">Exponential- & Logarithmusfunktion</div>
 
<div style="margin: 0 5px 5px 0; padding: 1em 1em 1em 1em; text-align:center; border: 1px solid :#66CD00; background-color:#f6fcfe;">
 
<div style="margin: 0 5px 5px 0; padding: 1em 1em 1em 1em; text-align:center; border: 1px solid :#66CD00; background-color:#f6fcfe;">
[[LERNPFAD]] &#124; [[Exponential- & Logarithmusfunktion]] &#124; [[Logarithmus]]  </div><noinclude>
+
[[../../|LERNPFAD]] &#124; [[../|Exponential- und Logarithmusfunktion]] &#124; [[../Logarithmus|Logarithmus]]  </div>

Aktuelle Version vom 15. Oktober 2011, 12:25 Uhr

Vista-Community Help.png
Lernpfad-Navigator

LERNPFAD

Arbeitsauftrag

Der Logarithmus hat für uns zwei Bedeutungen:

  • Er ist ein Werkzeug um Gleichungen zu lösen, bei denen x im Exponenten steht
  • Wir können auch die Logarithmusfunktion betrachen, die die Umkehrfunktion der Exponentialfunktion ist.

Auf den folgenden Folien wirst du an beide Aspekte erinnert.

{{#slideshare:logarithmusfunktion-100817023437-phpapp01}}

Falls die Präsentation nicht geladen werden kann, kannst du sie auch als PDF anschauen. Einfach anklicken.
Pdf20.gif Logarithmus




Leerzeile


Aufgaben

Die folgenden Aufgaben beziehen sich auf Exponentialgleichungen, x-Wertberechnungen von Exponentialfunktionen, da dies für deine Prüfung sehr relevant ist.

Aufgabe 1

Berechne Parameter und x-Werte zu Exponentialfunktionen. (Abschlussprüfung 2007; Aufgabengruppe B; 1.1)

Während der Beschleunigungsphase einer Rakete hat diese die Geschwindigkeit x \frac{km}{s}. Dabei verringert sich die Masse y \quad t (Tonne) der Rakete durch den Ausstoß von verbranntem Treibstoff. Die Veränderung der Raketenmasse in Abhängigkeit von ihrer Geschwindigkeit kann durch eine Gleichung der Form y=y_0 \cdot 0,37^{\frac{x}{k}} (\mathbb{G}=\mathbb{R}_0^+ \times \mathbb{R}^+; y_0 \in \mathbb{R}^+, k \in \mathbb{R}^+) dargestellt werden, wobei y_0 \quad die Startmasse der Rakete ist und k \frac{km}{s}

die Ausströmgeschwindigkeit des verbrannten Treibstoffes ist.

Eine Rakete hat eine Startmasse von 22,0 t. Bis diese Rakete eine Geschwindigkeit von 9,5 \frac{km}{s} erreicht, hat sich die Masse auf 4 t verringert. Berechnen sie k.

1.

Lösung: k = \frac{km}{s} (2 Nachkommastellen)

Punkte: 0 / 0
Mori hat einen Tipp für dich

Leerzeile

Die Rakete mit 22,0 t Startmasse hat seit dem Start 10,0 t Treibstoff verbrannt. Berechnen sie die dabei erreichte Geschwindigkeit x \frac{km}{s}.

1.

Lösung: x = \frac{km}{s} (2 Nachkommastellen)

Punkte: 0 / 0
Mori hat einen Tipp für dich

Leerzeile

Aufgabe 2 Peter Fischer Papier.png

Löse folgende Exponentialgleichungen (Abschlussprüfung 2004; Aufgabengruppe A; 1.6)

Eine Sekunde nach dem Beginn der Aufladung des Kondensators, wird ein zweiter Kondensator entladen. Dieser Vorgang wird mit der Gleichung y=8,5 \cdot 2,72^{-0,5(x-1)} beschrieben. Dabei steht x s für die Zeit ab dem Beginn der Aufladung des ersten Kondensators. Berechnen Sie auf Hundertstel Sekunden gerundet die Zeit x s, nach der an beiden Kondensatoren die gleiche Spannung anliegt.

1.

Lösung: x=s

Punkte: 0 / 0
Mori hat einen Tipp für dich

Leerzeile

Löse die Exponentialgleichung 7 \cdot 4^{x-2} = 25 \cdot 5^{2x+1}.
Mori hat einen Tipp für dich

1.

Lösung: \mathbb{L}= (2 Nachkommastellen)

Punkte: 0 / 0

Weiter gehts zu Abschnitt III Trigonometrie
Leerzeile

Exponential- & Logarithmusfunktion
LERNPFAD | Exponential- und Logarithmusfunktion | Logarithmus