Eigenschaften der Achsenspiegelung: Unterschied zwischen den Versionen
(16 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
__NOTOC__ | __NOTOC__ | ||
+ | __NOCACHE__ | ||
{{Lernpfad| | {{Lernpfad| | ||
===Teil 2: Eigenschaften der Achsenspiegelung=== | ===Teil 2: Eigenschaften der Achsenspiegelung=== | ||
Zeile 8: | Zeile 9: | ||
[[Bild:Spiegel7.jpg|400px|center]] | [[Bild:Spiegel7.jpg|400px|center]] | ||
− | '''Im Teil 1 des Lernpfads hast du ja schon einige grundlegende Dinge über das Thema Achsenspiegelung gelernt. Im | + | '''Im Teil 1 des Lernpfads hast du ja schon einige grundlegende Dinge über das Thema Achsenspiegelung gelernt. Im zweiten Teil soll es jetzt um die Eigenschaften der Achsenspiegelung gehen.''' |
'''Schreibe dir wieder alle Merksätze in dein Heft!''' | '''Schreibe dir wieder alle Merksätze in dein Heft!''' | ||
Zeile 37: | Zeile 38: | ||
{{Merke|'''Fixpunkt und Fixpunktgerade''' | {{Merke|'''Fixpunkt und Fixpunktgerade''' | ||
− | * Ein Punkt der sich genau auf der Spiegelachse befindet, heißt '''Fixpunkt'''. [[Bild:Spiegel2.jpg|300px|right]] | + | * Ein Punkt, der sich genau auf der Spiegelachse befindet, heißt '''Fixpunkt'''. [[Bild:Spiegel2.jpg|300px|right]] |
* Jeder Fixpunkt wird auf sich selbst abgebildet, somit sind in diesem Fall Urpunkt und Bildpunkt gleich. | * Jeder Fixpunkt wird auf sich selbst abgebildet, somit sind in diesem Fall Urpunkt und Bildpunkt gleich. | ||
* Die Spiegelachse besteht ausschließlich aus Fixpunkten. | * Die Spiegelachse besteht ausschließlich aus Fixpunkten. | ||
Zeile 56: | Zeile 57: | ||
| <ggb_applet height="400" width="400" showResetIcon="true" filename="Kreis.ggb" /> <br> Ziehe am Mittelpunkt M! || <ggb_applet height="400" width="400" showResetIcon="true" filename="Parallele.ggb" /> <br> Bewege die Gerade g!|| | | <ggb_applet height="400" width="400" showResetIcon="true" filename="Kreis.ggb" /> <br> Ziehe am Mittelpunkt M! || <ggb_applet height="400" width="400" showResetIcon="true" filename="Parallele.ggb" /> <br> Bewege die Gerade g!|| | ||
|- | |- | ||
− | | <ggb_applet height="400" width="400" showResetIcon="true" filename="StreckAB.ggb" /> <br> Ziehe am Punkt B!|| <ggb_applet height=" | + | | <ggb_applet height="400" width="400" showResetIcon="true" filename="StreckAB.ggb" /> <br> Ziehe am Punkt B!|| <ggb_applet width="634" height="519" version="3.2" ggbBase64="UEsDBBQACAAIAMmGcz4AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3VnNcts2ED43T8HhoTfRBEjK0lRKRnbSjGeceKZKc+gNIlcSaopkCdCW/VbJg+SZuvihTP1GipXEsS4UF8Bi8X27iwXYezWfpc4NlILnWd8lnu86kMV5wrNJ363kuNVxX7180ZtAPoFRyZxxXs6Y7LuBR10lr/jLF7/1xDS/dViqu3zkcNt3xywV4DqiKIElYgogl+SsmvOUs/LuavQvxFI8NBglF1lR4SyyrFAWz5JLLurXEz1hkXL5mt/wBEonzeO+247QdPz3EUrJY5b23dA3Etp36UojigLVOs1Lfp9nUnV/UD5GieMIfg+ICFWy3oleaA+qOOUJZ5lajLYDOznOLU/kFE0IQlQJfDJFWyNyarTFeV4mwzshYebM/4EyR3NIpIC+M2+BeRNoF04Y+bqp+abVwM0QpERahMPm8ADYpORJDZT6fyHO8jRZNBc5z+Q5K2RVakoDKxrKO6UfpyqVvYNskoKVUUR8CvH1KJ8PDQaBUf3hrtBDtD2jyXme5qVTKnQj7GCfI/PUfZShi16+7uPrHlaHUrpoJ12qe+jnyDx1r5RnxjS7cFIvmvj1NFw4SqBQRE9cLD5lI0BmXafKuLysX9ADru1SiRnwvpqNMASaPrDQSY6ls3ey4j29aygzSI2PZEhtlVfCuVG+aObShiQQ8xm+mgYLCVN0/Y0GGGkCkxJqw00AGcB0q9/0wxVx76Q2Qtkg0NZYYibA9Ui1lkE8FZCJgsME0iqb3PLsGlIVvhJDp++iS3HqE1xywiT2VykBUpgBBpDU3qKdbYHawF1ki1wHfu25tv0Bf2ze6Dnax1haTBlK6thI2R2mgeZitb53ebIMAcsQSr0+jMZCKVBkFQCJTX3SerhToEodLw0mNIDCmatxnQ7GaN9tES9su869Ga57mehSaUHPHFjqDShfgWf4Q+G5Go8FSLWeFqV6OST4Eei1qNfW0/negdjF+WzGssTJ2AwnGsJEyTVmXO0XDvOVizmMKCgNTpWsG5jRZnWsMSGsthpr5i7nHjnFEM9ACJ0gZTMVPoYw/1voIl2NX0B20bUEuG8QbwVe2NGY4z/a7qwm2B2LhP8y00eYNMdnuAXHXC5wThXlF5nEpAc6iaznsmuAQm0iV9mHkmVC1RKmTyNH7hUoZ88lj/iallA9jx0IQxMIZ2uBMDosEEZPOBCCU+PWtLtnJKD/6xHUpp4W8VHyhKNgmWldpm1LeA6jm+j+8mk337qWWBCFvdV4tKeyIOIWF9EwoH7gn3ZocBp2HkM28dfpJnvSTSPDdriRbHIAjayMG9FVC9M0v/0LxinMNc7flprO11PTcuX4i+QmqsYh2pF3esQK5/XzQYfWO2pEj4fPn88En9Dr2IrDxzrjePi8+Ro+DWueNEBYktE6vsLj4fP22eGjC9XHVEeXuCGsbJlvzJb5dm2vjHdvlWpvWSAZb6+Lwr3roi101Dcqh5ZGO0qfrq01fVtrtkjHI7sOAKuL2FX6bEf/HS/LvFzB/8zgH6/hf/Y7K3Lxx24WVo4CdshPPRA0E58fdJu/YxT4G0EcbANxcDiIg6cFYuCR9uJ+JVqC8/ToOA634Tg8HMfh08Kx7bVDv/Ej9bWLv/SLvsPh0wJhjqAPQC4BnBx2EE2OcRDdY/87SrrFbWs5D3Tt4YWuoE/M7k9DjwTtX+ckugftgy20w2G0w69Eu7ppW42t+t5tSR7aTZh4UddvBOnaN4+n6wKbLiPOmg7w4A10uzd8+bRPml29pGjk2V1XFe0NfrH/eeoxdxWtdtcyv9FxDqH5kZcV34W0zwfR9fmbiPohd0qtyPJEfzZPJ80PcPqTs/3m/vJ/UEsHCH6oAwlhBQAApR8AAFBLAQIUABQACAAIAMmGcz5+qAMJYQUAAKUfAAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAmwUAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" /> |
− | + | ||
− | + | ||
<br> | <br> | ||
Zeile 137: | Zeile 137: | ||
Liegt der Mittelpunkt eines Kreises auf der Spiegelachse, so wird er auf sich selbst '''abgebildet'''. | Liegt der Mittelpunkt eines Kreises auf der Spiegelachse, so wird er auf sich selbst '''abgebildet'''. | ||
− | Daher nennt man ihn '''Fixkreis'''. Steht eine Gerade '''senkrecht''' auf der Spiegelachse, wird sie bei Achsenspiegelung auf | + | Daher nennt man ihn '''Fixkreis'''. Steht eine Gerade '''senkrecht''' auf der Spiegelachse, wird sie bei einer Achsenspiegelung auf |
− | selbst abgebildet. Sie heißt daher '''Fixgerade'''. | + | sich selbst abgebildet. Sie heißt daher '''Fixgerade'''. |
</div> | </div> | ||
Zeile 199: | Zeile 199: | ||
<br> | <br> | ||
Welche der Geraden auf dem Bild ist die Spiegelachse? | Welche der Geraden auf dem Bild ist die Spiegelachse? | ||
− | [[Bild: | + | [[Bild:Geraden_LauraKlaus.png|800px|center]] |
Lösung! {{Versteckt| | Lösung! {{Versteckt| | ||
Zeile 208: | Zeile 208: | ||
[[Bild:Spiegel10.jpg|400px|center]] | [[Bild:Spiegel10.jpg|400px|center]] | ||
− | <div align="left">[[ | + | <div align="left">[[Lernpfade/Achsenspiegelung/Achsensymmetrische Vierecke und Dreiecke|<math>\Rightarrow</math> Weiter zum Lernpfad Achsensymmetrische Vierecke und Dreiecke]]</div> |
<br> | <br> | ||
− | <div align="left">[[ | + | <div align="left">[[Lernpfade/Achsenspiegelung/Grundlagen der Achsenspiegelung|<math>\Leftarrow</math> Zurück zum Lernpfad Grundlagen der Achsenspiegelung]]</div> |
Aktuelle Version vom 21. November 2018, 00:20 Uhr
Lernpfad
|
Im Teil 1 des Lernpfads hast du ja schon einige grundlegende Dinge über das Thema Achsenspiegelung gelernt. Im zweiten Teil soll es jetzt um die Eigenschaften der Achsenspiegelung gehen.
Schreibe dir wieder alle Merksätze in dein Heft!
1.Station: Besondere Punkte und Geraden
1. Aufgabe
Du siehst hier eine Achsenspiegelung bei der ein Punkt des Urdreiecks auf der Spiegelachse liegt. Das heißt Urpunkt und Bildpunkt sind gleich, B=B'.
Finde die unverdrehte Lösung zu den verdrehten Wörtern! Achte dabei auch auf die richtige Schreibweise.
Liegt ein Punkt bei einer Achsenspiegelung genau auf der Spiegelachse, nennt man einen solchen Punkt Fixpunkt.
Dabei wird jeder Fixpunkt auf sich selbst abgebildet. Alle Punkte auf der Spiegelachse sind Fixpunkte.
Daher ist die Spiegelachse eine Fixpunktgerade.
Das war ganz schön schwierig, oder? Wenn du nicht alle Wörter herausgefunden hast, sieh dir den Merksatz an!
Hier findest du den Merksatz!
Fixpunkt und Fixpunktgerade
|
2.Station: Wichtige Eigenschaften der Achsenspiegelung
Jetzt wollen wir uns die besonderen Eigenschaften der Achsenspiegelung anschauen. Es gibt fünf Eigenschaften, die du kennen solltest, um eine Achsenspiegelung richtig ausführen zu können! Also los geht´s!
Vielleicht helfen dir die folgenden Applets die Eigenschaften herauszufinden.