Lineare Gleichungssysteme rechnerisch lösen/Station 7: Unterschied zwischen den Versionen
Zeile 1: | Zeile 1: | ||
<div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;"> | <div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;"> | ||
− | '''Inhaltsverzeichnis:''' [[Benutzer:Sarah Hatos/Lineare Gleichungssysteme rechnerisch lösen| | + | '''Inhaltsverzeichnis:''' [[Benutzer:Sarah Hatos/Lineare Gleichungssysteme rechnerisch lösen|1. Einstieg]] - [[Lineare Gleichungssysteme rechnerisch lösen/Station 2|2. Gleichsetzungsverfahren]] - [[Lineare Gleichungssysteme rechnerisch lösen/Station 3|3. Übungen zum Gleichsetzungsverfahren]] - [[Lineare Gleichungssysteme rechnerisch lösen/Station 4|4. Einsetzungsverfahren]] - <br> |
+ | [[Lineare Gleichungssysteme rechnerisch lösen/Station 5|5. Übungen zum Einsetzungsverfahren]] - [[Lineare Gleichungssysteme rechnerisch lösen/Station 6|6. Additionsverfahren]] - [[Lineare Gleichungssysteme rechnerisch lösen/Station 7|7. Übungen zum Additionsverfahren]] - [[Lineare Gleichungssysteme rechnerisch lösen/Station 8|8. Lösen der Einstiegsaufgabe]] | ||
</div> | </div> | ||
− | = | + | =7. Übungen zum Additionsverfahren= |
<div style="border: 2px solid #008B00; background-color:#ffffff; padding:7px;"> | <div style="border: 2px solid #008B00; background-color:#ffffff; padding:7px;"> |
Version vom 26. Januar 2010, 12:12 Uhr
Inhaltsverzeichnis: 1. Einstieg - 2. Gleichsetzungsverfahren - 3. Übungen zum Gleichsetzungsverfahren - 4. Einsetzungsverfahren -
5. Übungen zum Einsetzungsverfahren - 6. Additionsverfahren - 7. Übungen zum Additionsverfahren - 8. Lösen der Einstiegsaufgabe
7. Übungen zum Additionsverfahren
Aufgabe 1
Versuche nun das folgende Lineare Gleichungssystem mit dem Additionsverfahren zu lösen.
( I ) 3x + 7y = - 30 und ( II ) - 5x - 7y = 22
( I ) + ( II ) :
( 3x + 7y ) + ( -5x - 7y ) = -30 + 22
( 3x + 7y ) + ( -5x - 7y ) | = | -30 + 22 | |
3x - 5x | = | -8 | |
-2x | = | -8 | / : ( -2 ) |
x | = | 4 |
3x + 7y | = | - 30 | |
3 * 4 + 7y | = | - 30 | |
12 + 7y | = | - 30 | / - 12 |
7y | = | - 42 | / : 7 |
y | = | -6 |
Gleichung ( I ) :
3x + 7y | = | - 30 |
3 * 4 (x - Wert) + 7 * - 6 (y - Wert) | = | - 30 |
12 (ausmultipliziert) - 42 | = | - 30 |
- 30 | = | - 30 |
Gleichung ( II ):
-5x - 7y | = | 22 |
-5 * 4 (x - Wert) - 7 * - 6 (y - Wert) | = | 22 |
-20 + 42 (ausmultipliziert) | = | 22 |
22 | = | 22 |
Somit lautet die Lösung des Linearen Gleichungssystems L = { ( 4 (x - Wert)| -6 ) }
Das Additionsverfahren lässt sich nicht gleich bei jedem Linearen Gleichungssystem anwenden, da nicht immer eine Variable wegfallen würde. Allerdings kannst du die Gleichungen dann so geschickt umformen, dass duch Addition eine Variable herausfällt.
Beispiel: ( I ) 2x + 3y = 134 und ( II ) 3x + 5y = 221
Wir multiplizieren die Gleichung ( I ) mit 3 und die Gleichung ( II ) mit -2
( I ) 2x + 3y = 134 | * 3 ( II ) 3x + 5y = 221 | * (-2)
dies ergibt ( I ) 6x + 9y = 402 ( II ) -6x - 10y = -442
Wenn man nun die beiden Gleichungen addiert fällt die Variable x heraus und man kann das Gleichungssystem lösen!
Aufgabe 2
Zuordnung
Jetzt bist du dran! Ordne dem jeweiligen Gleichungssystem den Umformungsschritt und die daraus entstanden Gleichungen zu!
( I ) 16x + 12y = 68 und ( II ) 2x + 6y = 6 | ( II ) * (-2) | ( I ) 16x + 12y = 68 und ( II ) -4x - 12y = -12 |
( I ) 11x - 5y = -3 und ( II ) -9x + 4y = 2 | ( I ) * 4 und ( II ) * 5 | ( I ) 44x - 20y = -12 und ( II ) -45 x + 20y = 10 |
( I ) -5x + 6y = 41 und ( II ) 3x - 8y = -73 | ( I ) * 4 und ( II ) * 3 | ( I ) -20x + 24y = 164 und ( II ) 9x - 24y = -219 |