Volumen der Pyramide: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
Zeile 1: Zeile 1:
== Das Volumen der Pyramide ==
+
== Prinzip von Cavalieri ==
  
  
Zeile 9: Zeile 9:
  
  
===Prinzip von Cavalieri===
+
 
Das Prinzip von Cavalieri besagt, dass zwei Körper mit den gleichen Rauminhalt (= Volumen)
+
 
besitzen, wenn folgendes erfüllt ist:<br />
+
<span style="color: blue">Das Prinzip von Cavalieri besagt, dass zwei Körper mit den gleichen Rauminhalt (= Volumen) besitzen, wenn folgendes erfüllt ist:</span><br />
  
 
1. Ihre Grundflächen sind inhaltsgleich und liegen in derselben Ebene E<sub>1</sub>.<br />
 
1. Ihre Grundflächen sind inhaltsgleich und liegen in derselben Ebene E<sub>1</sub>.<br />
Zeile 18: Zeile 18:
 
<br /><br />
 
<br /><br />
  
Analog bedeutet dies, dass zwei Pyramiden den gleichen Rauminhalt besitzen wenn...<br />
+
<span style="color: blue">Analog bedeutet dies, dass zwei Pyramiden den gleichen Rauminhalt besitzen wenn...</span><br />
 
1. ...die Pyramiden die gleiche Grundfläche besitzen und in derselben Ebene E<sub>1</sub> liegen.<br />
 
1. ...die Pyramiden die gleiche Grundfläche besitzen und in derselben Ebene E<sub>1</sub> liegen.<br />
 
2. ...die Höhen jeweils gleich lang sind.<br />
 
2. ...die Höhen jeweils gleich lang sind.<br />
Zeile 27: Zeile 27:
 
Bewege die drei Schieberegler, um die Höhe(n) oder die Breite der Grundfläche zu verändern.<br />
 
Bewege die drei Schieberegler, um die Höhe(n) oder die Breite der Grundfläche zu verändern.<br />
  
<ggb_applet height="480" width="710" showMenuBar="true" showResetIcon="true" filename="Cavalieri.ggb" /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br /><br />
+
<ggb_applet height="480" width="710" showMenuBar="true" showResetIcon="true" filename="Cavalieri.ggb" /><br /><br /><br /><br /><br /><br /><br />
  
  
  
  
===Die Volumenformel der Pyramide===
+
== Die Volumenformel der Pyramide ==
  
Bekanntlich lautet die Volumenformel für alle Prismen, sowie für den Zylinder "Grundfläche mal Höhe" also G x h.<br />
 
In den folgenden Video wird euch vorgeführt, wie man die Volumenformel der Pyramide ganz leicht erschließen kann.<br />
 
  
 +
'''Bekanntlich lautet die Volumenformel für alle Prismen, sowie für den Zylinder "Grundfläche mal Höhe" also G x h.'''<br />
 +
'''In den folgenden Video wird euch vorgeführt, wie man die Volumenformel der Pyramide ganz leicht erschließen kann.'''<br />
 +
<br /><br />
  
 
Video #1:<br />
 
Video #1:<br />

Version vom 12. Juli 2010, 21:42 Uhr

Prinzip von Cavalieri

Um das Volumen der Pyramide und die dazu notwendige Formel verstehen zu können, widmen wir uns zunächst dem Prinzip von Cavalieri.




Das Prinzip von Cavalieri besagt, dass zwei Körper mit den gleichen Rauminhalt (= Volumen) besitzen, wenn folgendes erfüllt ist:

1. Ihre Grundflächen sind inhaltsgleich und liegen in derselben Ebene E1.
2. Die Deckflächen sind inhaltsgleich und liegen in einer Ebene E2, die parallel zu E1 ist.
3. Jede Parallelebene En zu E1 schneidet aus beiden Körpern inhaltsgleiche Flächen.


Analog bedeutet dies, dass zwei Pyramiden den gleichen Rauminhalt besitzen wenn...
1. ...die Pyramiden die gleiche Grundfläche besitzen und in derselben Ebene E1 liegen.
2. ...die Höhen jeweils gleich lang sind.
3. ...jede Parallelebene En zu E1 aus beiden Körpern inhaltsgleiche Flächen schneidet.


Das folgende GeoGebra-Applet führt dies zum besseren Verständnis nocheinmal bildlich vor.
Bewege die drei Schieberegler, um die Höhe(n) oder die Breite der Grundfläche zu verändern.










Die Volumenformel der Pyramide

Bekanntlich lautet die Volumenformel für alle Prismen, sowie für den Zylinder "Grundfläche mal Höhe" also G x h.
In den folgenden Video wird euch vorgeführt, wie man die Volumenformel der Pyramide ganz leicht erschließen kann.


Video #1:




Video #2:










=> Das Volumen der Prismen errechnet sich mit der Formel "Grundfläche mal Höhe" (G * h)

=> Das Volumen der entsprechenden Pyramide beträgt jeweils ein Drittel und errechnet sich somit mit der Formel "Ein Drittel mal Grundfläche mal Höhe" (1/3 * G * h)



Pyramidemerke.jpg