Lineare Gleichungssysteme grafisch lösen/Station 2: Unterschied zwischen den Versionen
Zeile 98: | Zeile 98: | ||
</div> | </div> | ||
+ | |||
+ | |||
+ | '''Lies dir den Merkekasten sorgfältig durch!''' | ||
Version vom 17. März 2010, 18:36 Uhr
Inhaltsverzeichnis: 1. Einführung - 2. Grafisches Lösungsverfahren - 3. Übung zum grafischen Lösungsverfahren - 4. Verschiedene Lösungsmöglichkeiten -
5. Memo-Quiz zu verschiedene Lösungsmöglichkeiten - 6. Eine, keine oder unendlich viele Lösungsmöglichkeiten?
2. Grafisches Lösungsverfahren
Wie du siehst kann man ein Lineares Gleichungssystem grafisch lösen.
Du musst also nur die beiden Geraden, die zu den beiden Gleichungen gehören, in ein Koordinatensystem einzeichnen und den Schnittpunkt ablesen.
Versuche nun das folgende Lineare Gleichungssystem zu lösen:
( I ) y + 3 = 2x und ( II ) y + x = 3
1. Schritt: Zuerst musst du die beiden Gleichungen nach y auflösen, damit du Sie einzeichnen kannst!
Wie lautet die Gleichung ( I ) y + 3 = 2x nach y aufgelöst?
Wie lautet die Gleichung ( II ) y + x = 3 nach y aufgelöst?
2. Schritt: Nun kann man die Geraden in ein Koordinatensystem einzeichnen.
![]() |
Die rote Gerade gehört zu folgender Gleichung: Die blaue Gerade gehört zu folgender Gleichung: 3. Schritt: Wie lautet der Schnittpunkt der beiden Geraden? |
4. Schritt: Mache die Probe. Setze die Koordinaten des Schnittpunktes (siehe 3. Schritt) in deine beiden Anfangsgleichungen ein.
Ziehe hierfür mit gehaltener linker Maustaste die richtigen Zahlen in die freien Felder.
Gleichung 1:
y + 3 | = | 2x |
+ 3 | = | |
= |
Diese Aussage ist
Gleichung 2:
y + x | = | 3 |
+ | = | 3 |
= |
Diese Aussage ist
Also lautet die Lösungsmenge dieses Linearen Gleichungssystems
L = {( / )}
1wahr34wahr2244311
Lies dir den Merkekasten sorgfältig durch!