Volumen der Pyramide: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
(Prinzip von Cavalieri an Pyramiden)
(Prinzip von Cavalieri an Pyramiden)
Zeile 48: Zeile 48:
  
  
<ggb_applet height="500" width="720" showMenuBar="true" showResetIcon="true" filename="Cavalieri.ggb" /><br /><br /><br /><br /><br /><br /><br />
+
<ggb_applet height="500" width="720" showMenuBar="false" showResetIcon="true" filename="Cavalieri.ggb" /><br /><br /><br /><br /><br /><br /><br />
  
 
== 4.2 Die Volumenformel der Pyramide ==
 
== 4.2 Die Volumenformel der Pyramide ==

Version vom 15. Juli 2010, 14:45 Uhr

Inhaltsverzeichnis

4. Volumen der Pyramide

Um das Volumen der Pyramide und die dazu notwendige Formel verstehen zu können, widmen wir uns zunächst dem Prinzip von Cavalieri.




4.1 Prinzip von Cavalieri

Das Prinzip von Cavalieri besagt, dass zwei Körper mit den gleichen Rauminhalt (= Volumen) besitzen, wenn folgendes erfüllt ist:

1. Ihre Grundflächen sind inhaltsgleich und liegen in derselben Ebene E1.
2. Die Deckflächen sind inhaltsgleich und liegen in einer Ebene E2, die parallel zu E1 ist.
3. Jede Parallelebene En zu E1 schneidet aus beiden Körpern inhaltsgleiche Flächen.


Analog bedeutet dies, dass zwei Pyramiden den gleichen Rauminhalt besitzen wenn...
1. ...die Pyramiden die gleiche Grundfläche besitzen und in derselben Ebene E1 liegen.
2. ...die Höhen jeweils gleich lang sind.
3. ...jede Parallelebene En zu E1 aus beiden Körpern inhaltsgleiche Flächen schneidet.




Um dies besser verstehen zu können, sehen wir uns folgende Bilder an:


Geld1.JPG
Geld2.JPG
Geld3.JPG
Geld4.JPG
Diese zwei Körper haben offensichtlich dasselbe Volumen Doch was ist, wenn eines der Körper "schief" steht? Die Höhe, sowie Grund- und Deckfläche sind offensichtlich gleich, also betrachten wir die Schnittflächen, die durch die Parallelebene En enstehen Wie man aus dieser Perspektive sehen kann, werden aus beiden Körpern inhaltsgleiche Flächen herausgeschnitten





Prinzip von Cavalieri an Pyramiden

Das folgende GeoGebra-Applet führt dies zum besseren Verständnis nocheinmal bildlich vor.
Bewege die drei Schieberegler, um die Höhe(n) oder die Breite der Grundfläche zu verändern.
Hierbei soll auch verdeutlicht werden:

  • Schnittflächen in der Ebene En (hier: braune Ebene) müssen inhaltsgleich sein, nicht identisch
  • Grundflächen der Pyramiden können unterschiedliche Form haben, wichtig ist nur die Fläche, also der Inhalt









4.2 Die Volumenformel der Pyramide

Bekanntlich lautet die Volumenformel für alle Prismen, sowie für den Zylinder "Grundfläche mal Höhe" also G x h.
In den folgenden Video wird euch vorgeführt, wie man die Volumenformel der Pyramide ganz leicht erschließen kann.


Video #1:




Video #2:










=> Das Volumen der Prismen errechnet sich mit der Formel "Grundfläche mal Höhe" (G * h)

=> Das Volumen der entsprechenden Pyramide beträgt jeweils ein Drittel und errechnet sich somit mit der Formel "Ein Drittel mal Grundfläche mal Höhe" (1/3 * G * h)



Pyramidemerke.jpg