Potenzfunktionen: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
(- Doppelung)
Zeile 135: Zeile 135:
 
<div  style="background:#00BFFF;text-align:center;color: #fff;font-weight:bold;font-size:125%;margin: 10px 5px 0px 0; padding: 4px 4px 4px 14px;">Potenzen und Potenzfunktionen</div>
 
<div  style="background:#00BFFF;text-align:center;color: #fff;font-weight:bold;font-size:125%;margin: 10px 5px 0px 0; padding: 4px 4px 4px 14px;">Potenzen und Potenzfunktionen</div>
 
<div style="margin: 0 5px 5px 0; padding: 1em 1em 1em 1em; text-align:center; border: 1px solid #00BFFF; background-color:#f6fcfe;">
 
<div style="margin: 0 5px 5px 0; padding: 1em 1em 1em 1em; text-align:center; border: 1px solid #00BFFF; background-color:#f6fcfe;">
[[LERNPFAD]] &#124; [[Potenzen und Potenzfunktionen]] &#124; [[Exkurs: Lineare Funktionen]] &#124; [[Exkurs: Quadratische Funktionen]] &#124; [[Potenzfunktionen]] &#124; [[Potenzfunktionsabbildungen]] </div><noinclude>
+
[[Benutzer:Peter_Fischer|LERNPFAD]] &#124; [[Potenzen und Potenzfunktionen]] &#124; [[Exkurs: Lineare Funktionen]] &#124; [[Exkurs: Quadratische Funktionen]] &#124; [[Potenzfunktionen]] &#124; [[Potenzfunktionsabbildungen]] </div><noinclude>
  
  

Version vom 3. Mai 2011, 10:20 Uhr

Vista-Community Help.png
Lernpfad-Navigator

LERNPFAD

Arbeitsauftrag

Potenzfunktionen sind vielfältig. Die Präsentation versucht sie einzuordnen und dir einen Überblick zu verschaffen. Schau rein!

{{#slideshare:potenzfunktion-100816043034-phpapp02}}

Falls die Präsentation nicht geladen werden kann, kannst du sie auch als PDF anschauen. Einfach anklicken.
Pdf20.gif Potenzfunktionen




Leerzeile

Aufgaben

Aufgabe 1 Peter Fischer Papier.png

Hier eine Aufgabe, die bereits Mathematik aus verschiedenen Bereichen verbindet und Prüfungsaufgaben ähnelt. Sie ist eine frühere Prüfungsaufgabe und beschäftigt sich mit einer Hyperbel.


Gegeben ist die Funktion f ,mit y=3 \cdot x^{-1} -4 (\mathbb{G}=\mathbb{R^+}\times\mathbb{R})

Ermittle die nach y aufgelöste Gleichung der Umkehrfunktion f-1 zu f.

1. Entscheide welche Gleichung die Richtige ist

\quad f^{-1}: y=\frac{x+4}{3}
\quad f^{-1}: y=\frac{3}{x+4}
\quad f^{-1}: y=\frac{\frac{1}{3}}{x-4}

Punkte: 0 / 0

Leerzeile

Gib die Wertemenge der Funktion an.
Mori hat einen Tipp für dich

1.

Lösung:\mathbb{W}=\{y|y>\quad \}

Punkte: 0 / 0

Leerzeile

Tabellarisiere f für x \in \{0,5; 1; 2; 3; 4; 5; 6\} und zeichne den Graphen in ein Koordinatensystem.

Für die Zeichnung: \quad 1 LE \widehat{=} 1 cm; -3 \leq x \leq 7; -11 \leq y \leq 3

Ordne den x-Werten die passenden Funktionswerte zu!

x 0,5 1 2 3 4 5 6
y 2,00 -1,00 -2,50 -3,00 -3,25 -3,40 -3,50
Hier ist ein Applet zur anschaulichen Darstellung

Leerzeile

Die Punkte C_n(x|3 \cdot x^{-1}-4) auf dem Graphen f sind zusammen mit den Punkten \quad A(-2|-2) und \quad B(1|-10) jeweils die Eckpunkte von Dreiecken ABCn.

Zeichne das Dreieck ABC1 für \quad x=1 und das Dreieck ABC2 für \quad x=4 in das Koordinatensystem ein.

Leerzeile

Unter den Dreiecken ABCn gibt es ein gleichschenkliges Dreieck ABC3 mit der Basis [AB]. Zeichne dieses Dreieck in das Koordinatensystem ein und berechne die Koordinaten des Punktes C3.

1.

Lösung:C3(|)

Punkte: 0 / 0
Mori hat einen Tipp für dich

Leerzeile

Es gibt ein x für das ein Dreieck ABC4 den Flächeninhalt (6\sqrt{2}+5) FE besitzt. Berechne dieses x.

[Teilergebnis: A(x)=(4,5 \cdot x^{-1} +4x+5) FE]

Mori hat einen Tipp für dich

1.

Lösung: x4= (2 Nachkommastellen)

Punkte: 0 / 0

Leerzeile

Weiter gehts zu Potenzfunktionsabbildungen

Leerzeile

Potenzen und Potenzfunktionen
LERNPFAD | Potenzen und Potenzfunktionen | Exkurs: Lineare Funktionen | Exkurs: Quadratische Funktionen | Potenzfunktionen | Potenzfunktionsabbildungen