Von Scheitelpunktsform zur Normalform: Unterschied zwischen den Versionen
Zeile 65: | Zeile 65: | ||
|width=20px| | |width=20px| | ||
|valign="top"| | |valign="top"| | ||
− | {{#imagelink: smileyman15.png | Variationen/Quadratische Funktionen1/zurück zur ersten Parabel | + | {{#imagelink: smileyman15.png | }} |
+ | [[Datei:smileyman15.png |link=Variationen/Quadratische Funktionen1/zurück zur ersten Parabel]] | ||
+ | |} | ||
</div> | </div> | ||
__NOCACHE__ | __NOCACHE__ |
Version vom 20. Februar 2019, 19:08 Uhr
Von der Scheitelpunktsform zur Normalform
Du hast jetzt zwei verschiedene Formen kennengelernt, um eine quadratische Funktion darzustellen: Die Normalform mit f(x)= ax2 + bx + c und die Scheitelpunktsform mit f(x) = a(x - xs)2 + ys.
Löse die binomische Formel auf. Dann erhältst du: f(x)= -2(x2 + 2x + 1) +3.
Jetzt noch die Klammern auflösen und du hast die Normalform, nämlich: f(x)= -2x2 -4x +1.
|
|
Probiere das in der nächste Aufgabe aus!
- Aufgabe 20
In dieser Aufgabe sind verschiedene Funktionen in verschiedenen Formen gegeben. Zu jeder Funktion auf der linken Seite passt eine Funktion aus der untersten Leiste.
Suche dir die Scheitelpunktsform, wandle sie auf dem Laufzettel in die Normalform um und ordne sie dann richtig zu.
Zuordnung
Ordne richtig zu.
f(x) = 2(x - 3)2 + 4 | f(x)= 2x2 - 12x + 22 |
f(x) = -0,5(x + 4)2 - 2 | f(x)= -0,5x2 + 4x + 6 |
f(x) = 7(x + 1)2 - 9 | f(x)= 7x2 + 14x - 2 |
f(x) = -5(x - 3)2 + 2 | f(x)= -5x2 + 30x - 43 |
So, jetzt hast du schon sehr viel über quadratische Funktionen gelernt.
Mit deinem Wissen kannst du jetzt die Funktion des Graphen, den du am Anfang "gezeichnet" hast, herausfinden.