Exkurs Quadratische Funktionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
Vista-Community Help.png
Lernpfad-Navigator

LERNPFAD


Quadratische Funktionen

Arbeitsauftrag

Quadratische Funktionen oder Parabeln hast du in der neunten Klasse kennengelernt. Alle Infos zu Scheitelpunkts- und Normform sind auf den folgenden Folien nochmal zusammengefast - schaus dir an!

{{#slideshare:quadratisch-100520104946-phpapp02}}

Aufgaben

Nun wieder praktisches Arbeiten mit Quadratischen Funktionen.

Aufgabe 1 Peter Fischer Papier.png

Ordne den Funktionsgleichungen ihre Graphen zu. Achte auf die Merkmale von Parabeln.

Ordne der Normalform die passende Scheitelform und den Funktionsgraphen zu

\quad f: y=\frac{1}{2}x^2-2x+3 Peter Fischer P1.png \quad f: y=0,5(x-2)^2+1
\quad f: y=-x^2-x+1\frac{3}{4} Peter Fischer P2.png \quad f: y=-(x+0,5)^2+2
\quad f: y=2x^2+8x+7\frac{1}{2} Peter Fischer P3.png \quad f: y=2(x+2)^2-0,5
\quad f: y=-\frac{1}{2}x^2+2x-3 Peter Fischer P4.png \quad f: y=-0,5(x-2)^2-1
\quad f: y=x \cdot x Peter Fischer P5.png \quad f: y=x^2

Leerzeile

Aufgabe 2

Entscheide mit welchen Methoden du die Parabel wirklich zeichnen kannst.

1. Wie kannst du die Parabel y=-\frac{1}{2}x^2+3x+5 zeichnen?

Wertetabelle vom Taschenrechner ausgeben lassen, Werte einzeichnen
Den Punkt S(-3/5) einzeichnen und von dort aus die Werte der Parabel y=-\frac{1}{2} abtragen
Drei Werte ausrechnen, einzeichnen und verbinden
Den Scheitel ermitteln (Quadratische Ergänzung!), einzeichnen und von diesem aus die Werte der Parabel y=-\frac{1}{2} abtragen
Die Parabelschablone im Koordinatenursprung nach unten ansetzen und um den Vektor {-3 \choose 5} verschieben>

Punkte: 0 / 0


Leerzeile

Aufgabe 3 Peter Fischer Papier.png

Berechnungen zu quadratischen Funktionen

1.

Brechne die Schnittpunkte der ...
Prabeln y=-\frac{1}{2}x^2+3x+5 und y=2x^2+3. S(/); T(/) (2 Nachkommastellen)
Parabel y=-1\frac{1}{2}+3x-\frac{1}{2} mit der Geraden y=-1\frac{1}{2}-3\frac{1}{2} S(/); T(/)
Brechne die Funktionsgleichung der Parabel mit a=-1 und den Punkten A(0,5/-1,5); B(-1/3)
y=

Punkte: 0 / 0


Weiter gehts zu Potenzfunktionen


Potenzen und Potenzfunktionen
LERNPFAD | Potenzen und Potenzfunktionen | Exkurs Lineare Funktionen | Exkurs Quadratische Funktionen | Potenzfunktionen | Potenzfunktionsabbildungen