Volumen der Pyramide

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche

Das Volumen der Pyramide

Um das Volumen der Pyramide und die dazu notwendige Formel verstehen zu können, widmen wir uns zunächst dem Prinzip von Cavalieri.



Prinzip von Cavalieri

Das Prinzip von Cavalieri besagt, dass zwei Körper mit den gleichen Rauminhalt (= Volumen) besitzen, wenn folgendes erfüllt ist:

1. Ihre Grundflächen sind inhaltsgleich und liegen in derselben Ebene E_1.
2. Die Deckflächen sind inhaltsgleich und liegen in einer Ebene E_2, die parallel zu E_1 ist.
3. Jede Parallelebene E_n zu E_1 schneidet aus beiden Körpern inhaltsgleiche Flächen.


Analog bedeutet dies, dass zwei Pyramiden den gleichen Rauminhalt besitzen wenn...
1. ...die Pyramiden die gleiche Grundfläche besitzen und in derselben Ebene E_1 liegen.
2. ...die Höhen jeweils gleich lang sind.
3. ...jede Parallelebene E_n zu E_1 aus beiden Körpern inhaltsgleiche Flächen schneidet.


Das folgende GeoGebra-Applet führt dies zum besseren Verständnis nocheinmal bildlich vor.
Bewege die drei Schieberegler, um die Höhe(n) oder die Breite der Grundfläche zu verändern.
















Die Volumenformel der Pyramide

Bekanntlich lautet die Volumenformel für alle Prismen, sowie für den Zylinder "Grundfläche mal Höhe" also G x h.
Im folgenden Video wird euch vorgeführt, wie man die Volumenformel der Pyramide ganz leicht erschließen kann.