Parameter a

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
Beginn -   Fußball-WM - Die Halbzeitpause - Rückblick - Video - Der Parameter a - Aufgaben zu a - Der Parameter c - Aufgaben zu c - Kleine Entspannung - Die Normalform - Die Scheitelpunktsform - Übungen zur Scheitelspunktform - weitere Übungen - zur Normalform - zurück zur Anfangsparabel



Der Parameter a

Nachdem du jetzt f(x)=x2 schon kennst, erweitern wir das ein bisschen. Man kann eine quadratische Funktion auch durch die Formel f(x)=ax2 ausdrücken. Für welches a erhält man dann wohl die Normalparabel als Graph?

Man erhält eine Normalparabel, wenn a = (Zahl eintragen) ist.


Finde in der nächsten Aufgabe heraus, was a bei einer Parabel bewirkt.

Aufgabe 6


Verschiebe den Schieberegler, um zu schauen, was sich mit a ändert.

Für a gleich eins erhältst du die                     . Ist a > 1, so ist die Parabel
                    als die Normalparabel. Ist 0 < a < 1 , so ist die Parabel                     als die Normalparabel. Ist a < 0 , so ist die Parabel nach                     geöffnet.

untenengerNormalparabelweiter

Aufgabe 7

Zuordnung
Ordne den Funktionen den jeweils richtigen Graph zu und den Graphen die richtigen Funktionen.

f(x)= x2

3x2.png

-0,5x2.png

-x2.png

X2.pngf(x)= -0,5x2f(x)= 3x2f(x)= -x2



Aufgabe 8

Bist du dir bei dieser Aufgabe nicht sicher, probiere noch einmal den Schieberegler von Aufgabe 6.

1. Klicke an, was auf den Graph der jeweiligen Funktion zutrifft. Es stimmen immer zwei Eigenschaften.

a) Nach oben geöffnet b) Nach unten geöffnet c) Weiter als Normalparabel d) Enger als Normalparabel
... f(x)= -7x2
... f(x)= 4,5x2
... f(x)= 0,3x2
... f(x)= -0,7x2

Punkte: 0 / 0


Symbollaufzettel.bmp

Smileyman6.png