5.Station: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
 +
<div style="margin:0; margin-right:4px; margin-left:0px; border:2px solid #f4f0e4; padding: 0em 0em 0em 1em; background-color:#f4f0e4;">
 +
[[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung|1. Station: Fixelemente]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/2.Station|2. Station: Geradentreue und Parallelentreue]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/3.Station|3. Station: Winkeltreue, Längentreue und Flächeninhaltstreue]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/4.Station|4. Station: Längenverhältnistreue]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/5.Station|5. Station: Kreistreue]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/6.Station|6. Station: Zusammenfassung]] - [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/7.Station|7. Station: Übung]]
 +
</div>
 +
 
==5. Station: Kreistreue==
 
==5. Station: Kreistreue==
 
<div style="border: 2px solid #ffd700; background-color:#ffffff; padding:7px;">
 
<div style="border: 2px solid #ffd700; background-color:#ffffff; padding:7px;">

Version vom 3. Juli 2009, 16:51 Uhr

1. Station: Fixelemente - 2. Station: Geradentreue und Parallelentreue - 3. Station: Winkeltreue, Längentreue und Flächeninhaltstreue - 4. Station: Längenverhältnistreue - 5. Station: Kreistreue - 6. Station: Zusammenfassung - 7. Station: Übung

5. Station: Kreistreue

Kreistreue bedeutet, wenn das Bild eines Kreises ebenfalls ein Kreis ist.


Mit Hilfe dieses Applets kannst du einen Kreis zentrisch um den Faktor m = 3 strecken. Finde heraus,
ob die zentrische Streckung kreistreu ist.


Es gilt: \overline{PM} = r
Deshalb kann man schreiben: \overline{P'M'} = |m|\overline{PM} = r'
Der Bildpunkt P' liegt auf dem Kreis k' um M' mit Radius r' = |m| ∙ r.


Ist die zentrische Streckung kreistreu? (Ja) (!Nein)


Weiter zur 6. Station
Zurück zur 4. Station