Abbildung durch Achsenspiegelung: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: <div style="float:right;background:#fff;margin-left:5px; padding:0px; border:1px solid #aaaaaa; width:16em"> <div style="font-size:100%; line-height:120%; padding: .5em...)
 
Zeile 12: Zeile 12:
 
**[[Abbildung durch Achsenspiegelung]]
 
**[[Abbildung durch Achsenspiegelung]]
 
**[[Weitere Abbildungen]]
 
**[[Weitere Abbildungen]]
 +
*[[Prüfungsaufgaben]]
 
</div>
 
</div>
 
<div style="font-size:90%; padding: .5em; background-color:#D15FEE; border-top:1px solid #aaaaaa;">
 
<div style="font-size:90%; padding: .5em; background-color:#D15FEE; border-top:1px solid #aaaaaa;">

Version vom 10. Juni 2010, 11:05 Uhr

Vista-Community Help.png
Lernpfad-Navigator

LERNPFAD

Abbildungen im Koordinatensystem

Arbeitsauftrag

Die Achsenspiegelung ist eine grundlegende Abbildung, die du seit der sechsten Klasse kennt. Jetzt kannst auch Achsenspiegelungen an Ursprungsgeraden berechnen:|} {{#slideshare:achsenspiegelung-100609155221-phpapp02}}



Leerzeile


Aufgaben

Es geht nun darum Sinus, Cosiunus un Tangens als Rechenwerkzeuge kennen zu lernen!

Aufgabe 1 Peter Fischer Taschenrechner.png

Ordne den Gleichungen die richtigen Winkel zu. Bedenke, dass es stets zwei Winkel gibt.

\sin \alpha=0,707 \quad \quad \alpha=315^\circ \quad \alpha=225^\circ
\cos \alpha=\frac{1}{2} \quad \alpha=60^\circ \quad \alpha=300^\circ
\cos \alpha=-0,866 \quad \quad \alpha=210^\circ \quad \alpha=150^\circ
\tan \alpha=-0,577 \quad \quad \alpha=210^\circ \quad \alpha=330^\circ
\tan \alpha=1 \quad \quad \alpha=45^\circ \quad \alpha=135^\circ

Leerzeile

Aufgabe 2 Peter Fischer Papier.png

Hier warten zwei trigonometrische Gleichungen, die mit Hilfe der Zusammenhänge gelöst werden können.

1.

\quad {\sin}^2 \alpha +2 cos \alpha =0,5
Lösung: \quad \alpha_1=; \quad \alpha_2= (2 Nachkommastellen)
\quad \sin \alpha=\sqrt{3} \cdot \cos \alpha
Lösung: \quad \alpha_1=; \quad \alpha_2=

Punkte: 0 / 0



Leerzeile
Weiter gehts zu Trigonometrische Funktionen
Leerzeile


Abbildungen im Koordinatensystem