Abschlussprüfung 2009A: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
Zeile 26: Zeile 26:
 
|-
 
|-
 
|style="text-align:left" style="background-color:#EE5C42 ;"| <poem>
 
|style="text-align:left" style="background-color:#EE5C42 ;"| <poem>
A 1.0  
+
'''A 1.0'''
 
Ein Messbecher fasst, bis zum Rand gefüllt, genau einen Liter Flüssigkeit.
 
Ein Messbecher fasst, bis zum Rand gefüllt, genau einen Liter Flüssigkeit.
 
Die Nebenstehende Skizze zeigt den Axialschnitt des Messbechers.
 
Die Nebenstehende Skizze zeigt den Axialschnitt des Messbechers.
Zeile 38: Zeile 38:
  
 
{| border="1"
 
{| border="1"
|A 1.1 Berechnen Sie das Maß des Winkels CBA. Runden Sie auf Ganze.
+
|'''A 1.1''' Berechnen Sie das Maß des Winkels CBA. Runden Sie auf Ganze.
 
[Teilergebnis: <math>\quad \overline{AD}=69mm</math>]
 
[Teilergebnis: <math>\quad \overline{AD}=69mm</math>]
  
Zeile 52: Zeile 52:
 
{
 
{
 
| type="{}" }
 
| type="{}" }
Lösung: Winkel CBA= { 38 _5}<math>\quad ^\circ</math>   
+
'''Lösung:''' Winkel CBA= { 38 _5}<math>\quad ^\circ</math>   
 
</quiz>
 
</quiz>
  
Zeile 69: Zeile 69:
  
 
{| border="1"
 
{| border="1"
|A 1.2 Berechnen Sie auf Millimeter gerundet, bis zu welcher Höhe der Messbecher gefüllt ist, wenn er einen halben Liter Flüssigkeit enthält.
+
|'''A 1.2''' Berechnen Sie auf Millimeter gerundet, bis zu welcher Höhe der Messbecher gefüllt ist, wenn er einen halben Liter Flüssigkeit enthält.
  
 
{|
 
{|
Zeile 81: Zeile 81:
 
{
 
{
 
| type="{}" }
 
| type="{}" }
Lösung: Winkel CBA= { 38 _5}<math>\quad ^\circ</math>   
+
'''Lösung:''' Winkel CBA= { 38 _5}<math>\quad ^\circ</math>   
 
</quiz>
 
</quiz>
  
Zeile 97: Zeile 97:
 
{| border="1"  
 
{| border="1"  
 
| rowspan="2" width="12" style="background-color:#EE2C2C;"|
 
| rowspan="2" width="12" style="background-color:#EE2C2C;"|
| width="1000" style="text-align:left" style="background-color:#EE5C42 ;"| '''Aufgabe B [[Bild:Peter_Fischer_Papier.png|40px]] '''- Ebene Geometrie   
+
| width="1000" style="text-align:left" style="background-color:#EE5C42 ;"| '''Aufgabe A [[Bild:Peter_Fischer_Papier.png|40px]] '''- Ebene Geometrie   
 
|-
 
|-
 
|style="text-align:left" style="background-color:#EE5C42 ;"| <poem>
 
|style="text-align:left" style="background-color:#EE5C42 ;"| <poem>
A 2.0  
+
'''A 2.0'''
 
Die Pfeile <math>\vec{OP_n}(\varphi)={{2 \cos  \varphi -2} \choose {0,5 \cdot \sin \varphi}}</math> und <math>\vec{OR_n}(\varphi)={{3 \cos \varphi} \choose {-3 \cdot \sin \varphi}}</math> mit <math>\quad O(0|0) </math> spannen für <math>\quad \varphi \in ]37^\circ;180^\circ[</math> Parallelogramme <math>\quad OP_nQ_nR_n</math> auf.
 
Die Pfeile <math>\vec{OP_n}(\varphi)={{2 \cos  \varphi -2} \choose {0,5 \cdot \sin \varphi}}</math> und <math>\vec{OR_n}(\varphi)={{3 \cos \varphi} \choose {-3 \cdot \sin \varphi}}</math> mit <math>\quad O(0|0) </math> spannen für <math>\quad \varphi \in ]37^\circ;180^\circ[</math> Parallelogramme <math>\quad OP_nQ_nR_n</math> auf.
 
</poem>  
 
</poem>  
Zeile 107: Zeile 107:
  
 
{| border="1"
 
{| border="1"
|A 2.1 Berechnen Sie die Koordinaten der Pfeile <math>\quad \vec{OP_1}</math> und <math>\quad \vec{OR_1}</math> für <math>\quad \varphi=65^\circ</math>, sowie <math>\quad \vec{OP_2}</math> und <math>\quad \vec{OR_2}</math> für <math>\quad \varphi=150^\circ</math>. Runden Sie auf zwei Stellen nach dem Komma.
+
|'''A 2.1''' Berechnen Sie die Koordinaten der Pfeile <math>\quad \vec{OP_1}</math> und <math>\quad \vec{OR_1}</math> für <math>\quad \varphi=65^\circ</math>, sowie <math>\quad \vec{OP_2}</math> und <math>\quad \vec{OR_2}</math> für <math>\quad \varphi=150^\circ</math>. Runden Sie auf zwei Stellen nach dem Komma.
 
Zeichnen Sie sodann die Parallelogramme <math>\quad OP_1Q_1R_1</math> und <math>\quad OP_2Q_2R_2</math> in ein Koordinatensystem ein.
 
Zeichnen Sie sodann die Parallelogramme <math>\quad OP_1Q_1R_1</math> und <math>\quad OP_2Q_2R_2</math> in ein Koordinatensystem ein.
  
Zeile 115: Zeile 115:
 
{
 
{
 
| type="{}" }
 
| type="{}" }
Lösung: <math>\quad P_1</math>({ -1,15 _5}|{ 0,45 _5}; <math>\quad R_1</math>({ 1,27 _5}|{ -2,75 _5};  
+
'''Lösung:''' <math>\quad P_1</math>({ -1,15 _5}|{ 0,45 _5}; <math>\quad R_1</math>({ 1,27 _5}|{ -2,75 _5};  
 
           <math>\quad P_2</math>({ -3,73 _5}|{ 0,25 _5}; <math>\quad R_2</math>({ -2,60 _5}|{ -1,50 _5};  
 
           <math>\quad P_2</math>({ -3,73 _5}|{ 0,25 _5}; <math>\quad R_2</math>({ -2,60 _5}|{ -1,50 _5};  
 
         (Punktkoordinaten entsprechen Vektorkoordinaten, da <math>\quad O(0|0) </math>)
 
         (Punktkoordinaten entsprechen Vektorkoordinaten, da <math>\quad O(0|0) </math>)
Zeile 138: Zeile 138:
  
 
{| border="1"
 
{| border="1"
|A 2.2 Zeigen Sie rechnerisch, dass für die Länge der Strecken <math>\quad [OP_n]</math> in Abhängigkeit von <math>\quad \varphi</math> gilt:
+
|'''A 2.2''' Zeigen Sie rechnerisch, dass für die Länge der Strecken <math>\quad [OP_n]</math> in Abhängigkeit von <math>\quad \varphi</math> gilt:
 
<math>\overline{OP_n}=\sqrt{3,75 \cdot \cos^2 \varphi-8 \cdot \cos \varphi +4,25} LE</math>
 
<math>\overline{OP_n}=\sqrt{3,75 \cdot \cos^2 \varphi-8 \cdot \cos \varphi +4,25} LE</math>
 
{|
 
{|
Zeile 154: Zeile 154:
 
|}
 
|}
 
|}
 
|}
 +
 +
<span style="color:#FFFFFF"><big>Leerzeile</big></span>
  
 
{| border="1"
 
{| border="1"
|A 2.3 Begründen Sie, dass die Punkte <math>\quad R_n</math> auf einer Kreislinie um Mittelpunkt O mit dem Radius <math>\quad r=3 LE</math> liegen.
+
|'''A 2.3''' Begründen Sie, dass die Punkte <math>\quad R_n</math> auf einer Kreislinie um Mittelpunkt O mit dem Radius <math>\quad r=3 LE</math> liegen.
 
{|
 
{|
 
|[[Bild:Peter_Fischer_Tipp.png|35px|''Mori hat einen Tipp für dich'']]
 
|[[Bild:Peter_Fischer_Tipp.png|35px|''Mori hat einen Tipp für dich'']]
Zeile 174: Zeile 176:
  
 
{| border="1"
 
{| border="1"
|A 2.4 Das Parallelogramm <math>\quad OP_3Q_3R_3</math> ist eine Raute. Diese wird durch die Pfeile <math>\quad \vec{OP_3}</math> und <math>\quad \vec{OR_3}</math> aufgespannt.
+
|'''A 2.4''' Das Parallelogramm <math>\quad OP_3Q_3R_3</math> ist eine Raute. Diese wird durch die Pfeile <math>\quad \vec{OP_3}</math> und <math>\quad \vec{OR_3}</math> aufgespannt.
 
Berechnen Sie das zugehörige Winkelmaß <math>\quad \varphi</math>. Runden Sie auf zwei Stellen nach dem Komma.
 
Berechnen Sie das zugehörige Winkelmaß <math>\quad \varphi</math>. Runden Sie auf zwei Stellen nach dem Komma.
  
Zeile 187: Zeile 189:
 
{
 
{
 
| type="{}" }
 
| type="{}" }
Lösung: Winkel <math>\quad \varphi</math>= { 118,94 _7}<math>\quad ^\circ</math>   
+
'''Lösung:''' Winkel <math>\quad \varphi</math>= { 118,94 _7}<math>\quad ^\circ</math>   
 
</quiz>
 
</quiz>
  
Zeile 195: Zeile 197:
 
|<popup name="Lösung">  
 
|<popup name="Lösung">  
 
[[Bild:Peter_Fischer_09_A2.4.png]]
 
[[Bild:Peter_Fischer_09_A2.4.png]]
 +
</popup>
 +
|}
 +
|}
 +
 +
{| border="1"
 +
| rowspan="2" width="12" style="background-color:#EE2C2C;"|
 +
| width="1000" style="text-align:left" style="background-color:#EE5C42 ;"| '''Aufgabe A  [[Bild:Peter_Fischer_Papier.png|40px]] '''- Ebene Geometrie 
 +
|-
 +
|style="text-align:left" style="background-color:#EE5C42 ;"| <poem>
 +
'''A 3.0'''
 +
In einem Laborversuch untersuchten Baubiologen das Wachstum von Schimmelpilzen auf unterschiedlichen Fassadenplatten. Dazu wurden zwei mit A bzw. B gekennzeichnete Platten, auf denen zu Versuchsbeginn jeweils eine Fläche mit einem Inhalt von 100 cm² von Schimmelpilz befallen war, in einer Klimakammer beobachtet.
 +
Bei Platte A wurde festgestellt, dass sich der Inhalt der von Schimmelpilz befallenen Fläche täglich um 26% vergrößert hatte.
 +
</poem>
 +
|}
 +
 +
 +
{| border="1"
 +
|'''A 3.1''' Berechnen Sie, wie groß der Inhalt der von Schimmelpilz befallenen Fläche bei der Platte A am Ende des 6. Versuchstages war. Runden Sie auf Quadratzentimeter.
 +
<span style="color:#FFFFFF"><big>Leerzeile</big></span>
 +
 +
{|
 +
|[[Bild:Peter_Fischer_Tipp.png|35px|''Mori hat einen Tipp für dich'']]
 +
|<popup name="Tipp">
 +
Erstelle eine Exponentialgleichung!
 +
</popup>
 +
|}
 +
 +
 +
<quiz display="simple">
 +
{
 +
| type="{}" }
 +
'''Lösung:''' Die Fläche der vom Schimmelpilz befallenen Fläche auf Platte A am Ende des 6. Tages war A={ 400 _5}<math>\quad cm^2</math> groß.
 +
</quiz>
 +
 +
 +
{|
 +
|[[Bild:Peter_Fischer_Tipp.png|35px|''Mori hat einen Tipp für dich'']]
 +
|<popup name="Lösung">
 +
[[Bild:Peter_Fischer_09_A3.1.png]]
 +
</popup>
 +
|}
 +
 +
{|
 +
|[[Bild:Peter_Fischer_Applet.png|35px|''Hier ist ein Applet zur anschaulichen Darstellung'']]
 +
|<popup name="Applet zur anschaulichen Darstellung"> <ggb_applet height="600" width="850" showMenuBar="false" showResetIcon="true" filename="Peter Fischer_09_A2.1.ggb"/>
 +
</popup>
 +
|}
 +
|}
 +
 +
<span style="color:#FFFFFF"><big>Leerzeile</big></span>
 +
 +
{| border="1"
 +
|'''A 3.2''' Bei der Platte A war der Versuch abgebrochen worden, als der Inhalt der von Schimmelpilz befallenen Fläche einen Quadratmeter erreicht hatte.
 +
Ermitteln sie rechnerisch, am wie vielten Tag dies der Fall war.
 +
 +
<span style="color:#FFFFFF"><big>Leerzeile</big></span>
 +
 +
{|
 +
|[[Bild:Peter_Fischer_Tipp.png|35px|''Mori hat einen Tipp für dich'']]
 +
|<popup name="Tipp">
 +
Bedenke <math>\quad 1 m^2 = 100 dm^2 =10000 cm^2</math>
 +
</popup>
 +
|}
 +
 +
 +
<quiz display="simple">
 +
{
 +
| type="{}" }
 +
'''Lösung:''' Am { 20 _3}. Tag ist auf Platte A eine Fläche von einem Quadratmeter befallen.
 +
</quiz>
 +
{|
 +
|[[Bild:Peter_Fischer_Tipp.png|35px|''Mori hat einen Tipp für dich'']]
 +
|<popup name="Lösung">
 +
[[Bild:Peter_Fischer_09_A3.2.png]]
 +
</popup>
 +
|}
 +
|}
 +
 +
<span style="color:#FFFFFF"><big>Leerzeile</big></span>
 +
 +
{| border="1"
 +
|'''A 3.3''' Auch bei der Platte B hatte sich der Inhalt der vom Schimmelpilz befallenen Fläche täglich um einen festen Prozentsatz vergrößert. hier war ein Quadratmeter am Ende des 13. Versuchstages erreicht worden.
 +
Berechnen Sie den Prozentsatz.
 +
 +
<quiz display="simple">
 +
{
 +
| type="{}" }
 +
'''Lösung:''' Der Prozentsatz beträgt { 43 _5}%.
 +
</quiz>
 +
 +
{|
 +
|[[Bild:Peter_Fischer_Tipp.png|35px|''Mori hat einen Tipp für dich'']]
 +
|<popup name="Lösung">
 +
[[Bild:Peter_Fischer_09_A3.3.png]]
 
</popup>
 
</popup>
 
|}
 
|}

Version vom 11. Juni 2010, 16:02 Uhr

Vista-Community Help.png
Lernpfad-Navigator

LERNPFAD

Abschlussprüfung 2009 - Aufgabe A

Aufgabe A Peter Fischer Papier.png - Raumgeometrie

A 1.0
Ein Messbecher fasst, bis zum Rand gefüllt, genau einen Liter Flüssigkeit.
Die Nebenstehende Skizze zeigt den Axialschnitt des Messbechers.
\quad BD ist die Symmetrieachse.
Es gilt: \quad \overline{BD}=200mm.

Peter Fischer Messbecher.png

Leerzeile

A 1.1 Berechnen Sie das Maß des Winkels CBA. Runden Sie auf Ganze.

[Teilergebnis: \quad \overline{AD}=69mm]

Mori hat einen Tipp für dich

1.

Lösung: Winkel CBA= \quad ^\circ

Punkte: 0 / 0


Mori hat einen Tipp für dich

Leerzeile


A 1.2 Berechnen Sie auf Millimeter gerundet, bis zu welcher Höhe der Messbecher gefüllt ist, wenn er einen halben Liter Flüssigkeit enthält.
Mori hat einen Tipp für dich

1.

Lösung: Winkel CBA= \quad ^\circ

Punkte: 0 / 0


Mori hat einen Tipp für dich

Leerzeile

Aufgabe A Peter Fischer Papier.png - Ebene Geometrie

A 2.0
Die Pfeile \vec{OP_n}(\varphi)={{2 \cos  \varphi -2} \choose {0,5 \cdot \sin \varphi}} und \vec{OR_n}(\varphi)={{3 \cos \varphi} \choose {-3 \cdot \sin \varphi}} mit \quad O(0|0) spannen für \quad \varphi \in ]37^\circ;180^\circ[ Parallelogramme \quad OP_nQ_nR_n auf.


A 2.1 Berechnen Sie die Koordinaten der Pfeile \quad \vec{OP_1} und \quad \vec{OR_1} für \quad \varphi=65^\circ, sowie \quad \vec{OP_2} und \quad \vec{OR_2} für \quad \varphi=150^\circ. Runden Sie auf zwei Stellen nach dem Komma.

Zeichnen Sie sodann die Parallelogramme \quad OP_1Q_1R_1 und \quad OP_2Q_2R_2 in ein Koordinatensystem ein.

Leerzeile

1.

Lösung: \quad P_1(|; \quad R_1(|;
\quad P_2(|; \quad R_2(|;
(Punktkoordinaten entsprechen Vektorkoordinaten, da \quad O(0|0) )

Punkte: 0 / 0


Mori hat einen Tipp für dich
Hier ist ein Applet zur anschaulichen Darstellung

Leerzeile

A 2.2 Zeigen Sie rechnerisch, dass für die Länge der Strecken \quad [OP_n] in Abhängigkeit von \quad \varphi gilt:

\overline{OP_n}=\sqrt{3,75 \cdot \cos^2 \varphi-8 \cdot \cos \varphi +4,25} LE

Mori hat einen Tipp für dich
Mori hat einen Tipp für dich

Leerzeile

A 2.3 Begründen Sie, dass die Punkte \quad R_n auf einer Kreislinie um Mittelpunkt O mit dem Radius \quad r=3 LE liegen.
Mori hat einen Tipp für dich
Mori hat einen Tipp für dich


A 2.4 Das Parallelogramm \quad OP_3Q_3R_3 ist eine Raute. Diese wird durch die Pfeile \quad \vec{OP_3} und \quad \vec{OR_3} aufgespannt.

Berechnen Sie das zugehörige Winkelmaß \quad \varphi. Runden Sie auf zwei Stellen nach dem Komma.

Mori hat einen Tipp für dich

1.

Lösung: Winkel \quad \varphi= \quad ^\circ

Punkte: 0 / 0


Mori hat einen Tipp für dich
Aufgabe A Peter Fischer Papier.png - Ebene Geometrie

A 3.0
In einem Laborversuch untersuchten Baubiologen das Wachstum von Schimmelpilzen auf unterschiedlichen Fassadenplatten. Dazu wurden zwei mit A bzw. B gekennzeichnete Platten, auf denen zu Versuchsbeginn jeweils eine Fläche mit einem Inhalt von 100 cm² von Schimmelpilz befallen war, in einer Klimakammer beobachtet.
Bei Platte A wurde festgestellt, dass sich der Inhalt der von Schimmelpilz befallenen Fläche täglich um 26% vergrößert hatte.


A 3.1 Berechnen Sie, wie groß der Inhalt der von Schimmelpilz befallenen Fläche bei der Platte A am Ende des 6. Versuchstages war. Runden Sie auf Quadratzentimeter.

Leerzeile

Mori hat einen Tipp für dich


1.

Lösung: Die Fläche der vom Schimmelpilz befallenen Fläche auf Platte A am Ende des 6. Tages war A=\quad cm^2 groß.

Punkte: 0 / 0


Mori hat einen Tipp für dich
Hier ist ein Applet zur anschaulichen Darstellung

Leerzeile

A 3.2 Bei der Platte A war der Versuch abgebrochen worden, als der Inhalt der von Schimmelpilz befallenen Fläche einen Quadratmeter erreicht hatte.

Ermitteln sie rechnerisch, am wie vielten Tag dies der Fall war.

Leerzeile

Mori hat einen Tipp für dich


1.

Lösung: Am . Tag ist auf Platte A eine Fläche von einem Quadratmeter befallen.

Punkte: 0 / 0
Mori hat einen Tipp für dich

Leerzeile

A 3.3 Auch bei der Platte B hatte sich der Inhalt der vom Schimmelpilz befallenen Fläche täglich um einen festen Prozentsatz vergrößert. hier war ein Quadratmeter am Ende des 13. Versuchstages erreicht worden.

Berechnen Sie den Prozentsatz.

1.

Lösung: Der Prozentsatz beträgt %.

Punkte: 0 / 0


Mori hat einen Tipp für dich


Leerzeile
Weiter gehts zu Abschlussprüfung 2009 - Aufgabe B
Leerzeile


Abbildungen im Koordinatensystem
LERNPFAD | Abschlussprüfung 2009 - Aufgabe A | Abschlussprüfung 2009 - Aufgabe B | Abschlussprüfung 2008