4.Station: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
(Quiz geändert)
K
Zeile 38: Zeile 38:
 
3.<br>
 
3.<br>
 
Einsetzen der Werte:<br>
 
Einsetzen der Werte:<br>
<math>{\overline{AP}\over\overline{PB}}</math> = '''<math>{\overline{0,7 cm}\over\overline{1,5 cm}}</math>''' = '''0,47 cm (Berechne das Ergebnis mit dem Taschenrechner)'''<br>
+
<math>{\overline{AP}\over\overline{PB}}</math> = '''<math>{0,7 cm \over 1,5 cm}</math>''' = '''0,47 cm (Berechne das Ergebnis mit dem Taschenrechner)'''<br>
<math>{\overline{A'P'}\over\overline{P'B'}}</math> = '''<math>{\overline{1,4 cm}\over\overline{3 cm}}</math>''' = '''0,47 cm (Berechne das Ergebnis mit dem Taschenrechner)'''<br>
+
<math>{\overline{A'P'}\over\overline{P'B'}}</math> = '''<math>{1,4 cm \over 3 cm}</math>''' = '''0,47 cm (Berechne das Ergebnis mit dem Taschenrechner)'''<br>
 
</div>
 
</div>
 
:'''Das hast du super gemeistert!'''
 
:'''Das hast du super gemeistert!'''

Version vom 8. Juli 2009, 17:12 Uhr

1. Station: Fixelemente - 2. Station: Geradentreue und Parallelentreue - 3. Station: Winkeltreue, Längentreue und Flächeninhaltstreue - 4. Station: Längenverhältnistreue - 5. Station: Kreistreue - 6. Station: Zusammenfassung - 7. Station: Übung


4. Station: Längenverhältnistreue

Porzelt Panto-2.jpg

Längenverhältnistreue liegt vor, wenn das Längenverhältnis der Bildstrecke gleich dem der Urstrecke ist.



Porzelt Verhältnistreu.jpg Arbeitsauftrag:

1.Berechne den Streckungsfaktor k.
2.Berechne \overline{A'P'} und \overline{P'B'}.

3.Berechne {\overline{AP}\over\overline{PB}} und {\overline{A'P'}\over\overline{P'B'}}. Runde auf 2 Nachkommastellen.


Mit Hilfe des folgenden Lückentextes kannst du den Arbeitsauftrag lösen.
Denk konzentriert nach und setze die richtige Aussage in die passende Lücke ein, um die Ergebnisse berechnen zu können:

1.
|k| = \overline{ZB'} : \overline{ZB}
Einsetzen der Werte:
|k| = 6 : 3 = 2 (Berechne das Ergebnis mit dem Taschenrechner)
2.
\overline{A'P'} = \mid k \mid \cdot \overline{AP}
Einsetzen der Werte:
\overline{A'P'} = 2 \cdot 0,7 cm = 1,4 cm (Berechne das Ergebnis mit dem Taschenrechner)

\overline{P'B'} = \mid k \mid \cdot \overline{PB}
Einsetzen der Werte:
\overline{P'B'} = 2 \cdot 1,5 cm = 3 cm (Berechne das Ergebnis mit dem Taschenrechner)
3.
Einsetzen der Werte:
{\overline{AP}\over\overline{PB}} = {0,7 cm \over 1,5 cm} = 0,47 cm (Berechne das Ergebnis mit dem Taschenrechner)
{\overline{A'P'}\over\overline{P'B'}} = {1,4 cm \over 3 cm} = 0,47 cm (Berechne das Ergebnis mit dem Taschenrechner)

Das hast du super gemeistert!


Porzelt fragenderDia-1.jpg


Warum ist {\overline{AP}\over\overline{PB}} = {\overline{A'P'}\over\overline{P'B'}}?


Für \overline{AP} kann man auch \mid k\mid  \cdot \overline{A'P'} und für \overline{PB} kann man \mid k\mid  \cdot \overline{P'B'} einsetzen.
Daraus folgt: {\overline{AP}\over\overline{PB}} ={{|k|}\over{|k|}}\cdot {\overline{A'P'}\over\overline{P'B'}}.
\mid k\mid kann man rauskürzen, so dass {\overline{AP}\over\overline{PB}} = {\overline{A'P'}\over\overline{P'B'}} gilt.


Ist die zentrische Streckung längenverhältnistreu? (Ja) (!Nein)


Weiter zur 5. Station
Zurück zur 3. Station