4.Station: Unterschied zwischen den Versionen

Aus DMUW-Wiki
Wechseln zu: Navigation, Suche
(Bild eingefügt)
Zeile 5: Zeile 5:
  
 
==4. Station: Längenverhältnistreue==
 
==4. Station: Längenverhältnistreue==
 +
[[Bild:Porzelt_lobenderDia3.jpg]]
 
<div style="border: 2px solid #ffd700; background-color:#ffffff; padding:7px;">
 
<div style="border: 2px solid #ffd700; background-color:#ffffff; padding:7px;">
 
[[Bild:Porzelt_Panto-2.jpg|left]] <br>'''Längenverhältnistreue''' liegt vor, wenn das Längenverhältnis der Bildstrecke gleich dem der Urstrecke ist.
 
[[Bild:Porzelt_Panto-2.jpg|left]] <br>'''Längenverhältnistreue''' liegt vor, wenn das Längenverhältnis der Bildstrecke gleich dem der Urstrecke ist.
Zeile 49: Zeile 50:
 
<math>{\overline{A'P'}\over\overline{P'B'}}</math> = '''<math>{1,4\ cm \over 3\ cm}</math>''' = '''0,47 (Berechne das Ergebnis mit dem Taschenrechner)'''<br>
 
<math>{\overline{A'P'}\over\overline{P'B'}}</math> = '''<math>{1,4\ cm \over 3\ cm}</math>''' = '''0,47 (Berechne das Ergebnis mit dem Taschenrechner)'''<br>
 
</div>
 
</div>
'''Das hast du super gemeistert!'''<br>
+
<br>
 +
[[Bild:Porzelt_lobenderPanto6.jpg]]
 
<br>
 
<br>
  

Version vom 12. Juli 2009, 21:35 Uhr

1. Station: Fixelemente - 2. Station: Geradentreue und Parallelentreue - 3. Station: Winkeltreue, Längentreue und Flächeninhaltstreue - 4. Station: Längenverhältnistreue - 5. Station: Kreistreue - 6. Station: Zusammenfassung - 7. Station: Übung


4. Station: Längenverhältnistreue

Porzelt lobenderDia3.jpg

Porzelt Panto-2.jpg

Längenverhältnistreue liegt vor, wenn das Längenverhältnis der Bildstrecke gleich dem der Urstrecke ist.



Porzelt Verhältnistreu.jpg Arbeitsauftrag:

1.Berechne den Streckungsfaktor k.
2.Berechne \overline{A'P'} und \overline{P'B'}.

3.Berechne {\overline{AP}\over\overline{PB}} und {\overline{A'P'}\over\overline{P'B'}}. Runde auf 2 Nachkommastellen.


Mit Hilfe der folgenden Lückentexte kannst du den Arbeitsauftrag lösen.
Denk konzentriert nach und setze die richtige Aussage in die passende Lücke ein, um die Ergebnisse berechnen zu können:

Lösung zu 1:
\mid k \mid = \overline{ZB'} : \overline{ZB}
Einsetzen der Werte:
\mid k \mid = 6 : 3 = 2 (Berechne das Ergebnis mit dem Taschenrechner)

Porzelt Verhältnistreu.jpg

Lösung zu 2:
\overline{A'P'} = \mid k \mid \cdot \overline{AP}
Einsetzen der Werte:
\overline{A'P'} = 2 \cdot 0,7 cm = 1,4 cm (Berechne das Ergebnis mit dem Taschenrechner)

\overline{P'B'} = \mid k \mid \cdot \overline{PB}
Einsetzen der Werte:
\overline{P'B'} = 2 \cdot 1,5 cm = 3 cm (Berechne das Ergebnis mit dem Taschenrechner)

Lösung zu 3:
Einsetzen der Werte:
{\overline{AP}\over\overline{PB}} = {0,7\ cm \over 1,5\ cm} = 0,47 (Berechne das Ergebnis mit dem Taschenrechner)
{\overline{A'P'}\over\overline{P'B'}} = {1,4\ cm \over 3\ cm} = 0,47 (Berechne das Ergebnis mit dem Taschenrechner)


Porzelt lobenderPanto6.jpg

Porzelt fragenderDia-1.jpg


Warum ist {\overline{AP}\over\overline{PB}} = {\overline{A'P'}\over\overline{P'B'}}?

Für \overline{A'P'} kann man auch \mid k\mid  \cdot \overline{AP} und für \overline{P'B'} kann man \mid k\mid  \cdot \overline{PB} einsetzen.
Daraus folgt: {\overline{A'P'}\over\overline{P'B'}} ={{|k|}\over{|k|}}\cdot {\overline{AP}\over\overline{PB}}.
\mid k\mid kann man rauskürzen, so dass {\overline{A'P'}\over\overline{P'B'}} = {\overline{AP}\over\overline{PB}} gilt.


Ist die zentrische Streckung längenverhältnistreu? (Ja) (!Nein)



\Rightarrow Weiter zur 5. Station


\Leftarrow Zurück zur 3. Station