Eigenschaften der zentrischen Streckung: Unterschied zwischen den Versionen
Zeile 6: | Zeile 6: | ||
[[Bild:Porzelt_Eigenschaften.jpg|center]] | [[Bild:Porzelt_Eigenschaften.jpg|center]] | ||
<br> | <br> | ||
− | + | [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/2.Station|2. Station]] | |
+ | [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/3.Station|3. Station]] | ||
+ | [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/4.Station|4. Station]] | ||
+ | [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/5.Station|5. Station]] | ||
+ | [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/6.Station|6. Station]] | ||
+ | [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/7.Station|7. Station]] | ||
+ | <br> | ||
==1. Station: Fixelemente== | ==1. Station: Fixelemente== | ||
<div style="border: 2px solid #ffd700; background-color:#ffffff; padding:7px;"> | <div style="border: 2px solid #ffd700; background-color:#ffffff; padding:7px;"> | ||
Zeile 82: | Zeile 88: | ||
</div> | </div> | ||
<br> | <br> | ||
+ | [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/3.Station|Weiter zur 3. Station]] | ||
+ | [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung|Zurück zur 1. Station]] | ||
==3. Station: Winkeltreue, Längentreue und Flächeninhaltstreue== | ==3. Station: Winkeltreue, Längentreue und Flächeninhaltstreue== | ||
Zeile 116: | Zeile 124: | ||
|} | |} | ||
<br> | <br> | ||
+ | [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/4.Station|Weiter zur 4. Station]] | ||
+ | [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/2.Station|Zurück zur 2. Station]] | ||
==4. Station: Längenverhältnistreue== | ==4. Station: Längenverhältnistreue== | ||
Zeile 173: | Zeile 183: | ||
</div> | </div> | ||
<br> | <br> | ||
+ | [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/5.Station|Weiter zur 5. Station]] | ||
+ | [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/3.Station|Zurück zur 3. Station]] | ||
==5. Station: Kreistreue== | ==5. Station: Kreistreue== | ||
Zeile 195: | Zeile 207: | ||
</div> | </div> | ||
<br> | <br> | ||
+ | [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/6.Station|Weiter zur 6. Station]] | ||
+ | [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/4.Station|Zurück zur 4. Station]] | ||
==6. Station: Zusammenfassung== | ==6. Station: Zusammenfassung== | ||
Zeile 209: | Zeile 223: | ||
</div> | </div> | ||
<br> | <br> | ||
+ | [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/7.Station|Weiter zur 7. Station]] | ||
+ | [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/5.Station|Zurück zur 5. Station]] | ||
==7. Station: Übung== | ==7. Station: Übung== | ||
Zeile 223: | Zeile 239: | ||
:{{Lösung versteckt| | :{{Lösung versteckt| | ||
[[Bild:Porzelt_Konstruktion.jpg]]}} | [[Bild:Porzelt_Konstruktion.jpg]]}} | ||
+ | <br> | ||
+ | [[Benutzer:Leonie Porzelt/Eigenschaften der zentrischen Streckung/6.Station|Zurück zur 6. Station]] |
Version vom 3. Juli 2009, 16:00 Uhr
Lernpfad
|
2. Station
3. Station
4. Station
5. Station
6. Station
7. Station
1. Station: Fixelemente
- Für k1 gilt:
- Das Streckungszentrum Z ist Fixpunkt, da es immer auf sich selbst abgebildet wird.
- Betrachte das Bild und überleg dir, wie die Geraden f' und g' verlaufen, wenn man f und g an dem Zentrum Z zentrisch streckt.
- Hier kannst du deine Lösung mit der von Dia vergleichen:
- f' wird auf f und g' wird auf g abgebildet. Geometrisch bedeutet dies: f=f' und g=g'.
- Panto will auch etwas dazu sagen. Lass es dir anzeigen:
- Alle Geraden die durch den Punkt Z verlaufen sind Fixgeraden. Sie werden bei einer zentrischen
- Streckung auf sich selbst abgebildet.
2. Station: Geradentreue und Parallelentreue
- Geradentreue bedeutet, wenn das Bild einer Geraden ebenfalls auf eine Gerade abgebildet wird.
- Parallelentreue liegt vor, wenn das Bild einer parallelen Geraden wieder auf eine parallele Gerade abgebildet wird.
- Hier siehst du einen Punkt P der auf der Geraden g verläuft. P wird durch zentrische Streckung mit dem Zentrum Z
- auf den Punkt P' abgebildet.
- Arbeitsauftrag
- Schritt 1: Bewege den Punkt P auf der Geraden g und beobachte die Spur die der Punkt P' hinterlässt.
- Schritt 2: Änder den Streckungsfaktor und wiederhole Schritt 1.
|
- Um herauszufinden bei einer zentrische Streckung, ob eine Urstrecke auf eine parallele Bildstrecke mit
- |k|-facher Länge abgebildet wird, musst du dir das nächste Applet anschauen.
- Arbeitsauftrag:
- Klicke Schritt 1 an. Es wird eine Hilfsstrecke [ZP] mit [ZP] || [AB] und AB = A'B' eingezeichnet.
- Klicke Schritt 2 an. [ZH] wird zentrisch gestreckt, so dass gilt: ZP' = |k| ∙ ZP
Setze in die Lücken richtig ein:
Das Viereck ZA'B'P' ist ein Parallelogramm. |
Ist die zentrische Streckung parallelentreu? (Ja) (!Nein)
Weiter zur 3. Station
Zurück zur 1. Station
3. Station: Winkeltreue, Längentreue und Flächeninhaltstreue
- Winkeltreue bedeutet, wenn alle Bildwinkel genauso groß sind wie die Urbildwinkel.
- Ebenso gilt für die Längentreue, dass alle Bildstrecken genauso lang sind wie die Urbildstrecken.
- Flächeninhaltstreue liegt vor, wenn der Flächeninhalt des Bildes genauso groß ist, wie der Flächeninhalt des Urbildes.
- In diesem Applet siehst du ein Dreieck, dass um k= 3.5 zentrisch gestreckt wurde. Lass dir das Winkelmaß,
- die Streckenlängen und den Flächeninhalt nacheinander anzeigen.
- Arbeitsauftrag:
- Vergleiche die Werte und überlege, welche Eigenschaften zutreffen.
Welche Eigenschaften treffen auf die zentrische Streckung zu? (Winkeltreue) (!Längentreue) (!Flächeninhaltstreue)
- Nur wie kann man jetzt den Flächeninhalt des zentrisch gestreckten Dreiecks berechnen?
- Finde es durch Umformung heraus! Setze dafür die richtigen Aussagen in die passenden Lücken ein:
AABC = 0,5 ∙ AB ∙ h |
Weiter zur 4. Station
Zurück zur 2. Station
4. Station: Längenverhältnistreue
- Längenverhältnistreue liegt vor, wenn das Längenverhältnis der Bildstrecke gleich dem der Urstrecke ist.
Arbeitsauftrag:
|
- Um herauszufinden ob deine Lösungen richtig sind, klicke hier die Lösung an:
- Warum ist = ?
Für kann man auch |k| ∙ und für kann man |k| ∙ einsetzen.
Daraus folgt: = ∙ .
|k| kann man rauskürzen, so dass = gilt.
Ist die zentrische Streckung längenverhältnistreu? (Ja) (!Nein)
Weiter zur 5. Station
Zurück zur 3. Station
5. Station: Kreistreue
- Kreistreue bedeutet, wenn das Bild eines Kreises ebenfalls ein Kreis ist.
- Mit Hilfe dieses Applets kannst du einen Kreis zentrisch um den Faktor m = 3 strecken. Finde heraus,
- ob die zentrische Streckung kreistreu ist.
Es gilt: = r
Deshalb kann man schreiben: = |m| ∙ = r'
Der Bildpunkt P' liegt auf dem Kreis k' um M' mit Radius r' = |m| ∙ r.
Ist die zentrische Streckung kreistreu? (Ja) (!Nein)
Weiter zur 6. Station
Zurück zur 4. Station
6. Station: Zusammenfassung
- Hier ist alles was du bisher herausgefunden hast zusammengefasst. Übertrage diese Zusammenfassung in dein Heft.
Eigenschaften der zentrischen Streckung
Jede Gerade die durch das Zentrum Z verläuft, wird auf sich selbst abgebildet. Sie ist eine Fixgerade.
Jede Gerade, die nicht durch das Zentrum Z verläuft, wird auf eine parallele Bildgerade abgebildet. Sie ist parallelentreu.
Die Bildstrecke ist |k|-mal so lang wie die Urstrecke. Sie ist also nicht längentreu.
Jedoch ist sie längenverhältnistreu.
Die zentrische Streckung ist geradentreu, winkeltreu und kreistreu.
Der Flächeninhalt der Bildfigur beträgt das |k|²-fache des Flächeninhalts der Urfigur. (AA'B'C' = |k|² ∙ AABC)
Die zentrische Streckung ist deshalb nicht flächeninhaltstreu.
Weiter zur 7. Station
Zurück zur 5. Station
7. Station: Übung
- Hier kannst du deine Lösung mit der von Dia vergleichen: