Abschlussprüfung 2009A: Unterschied zwischen den Versionen
Zeile 74: | Zeile 74: | ||
|[[Bild:Peter_Fischer_Tipp.png|35px|''Mori hat einen Tipp für dich'']] | |[[Bild:Peter_Fischer_Tipp.png|35px|''Mori hat einen Tipp für dich'']] | ||
|<popup name="Tipp"> | |<popup name="Tipp"> | ||
− | Bilde Verhältnisse von <math>\quad r=[AD] </math> und <math>r'</math>, neuer Radius. | + | Bilde Verhältnisse von <math>\quad r=[AD] </math> und <math>r' \quad</math>, neuer Radius. |
</popup> | </popup> | ||
|} | |} |
Version vom 4. August 2010, 19:56 Uhr
Abschlussprüfung 2009 - Aufgabe A
Leerzeile
A 1.1 Berechnen Sie das Maß des Winkels CBA. Runden Sie auf Ganze.
[Teilergebnis: ]
|
Leerzeile
A 1.2 Berechnen Sie auf Millimeter gerundet, bis zu welcher Höhe der Messbecher gefüllt ist, wenn er einen halben Liter Flüssigkeit enthält.
|
Leerzeile
Aufgabe A - Ebene Geometrie | |
A 2.0 |
Leerzeile
A 2.2 Zeigen Sie rechnerisch, dass für die Länge der Strecken in Abhängigkeit von gilt:
|
Leerzeile
A 2.3 Begründen Sie, dass die Punkte auf einer Kreislinie um Mittelpunkt O mit dem Radius liegen.
|
A 2.4 Das Parallelogramm ist eine Raute. Diese wird durch die Pfeile und aufgespannt.
Berechnen Sie das zugehörige Winkelmaß . Runden Sie auf zwei Stellen nach dem Komma.
|
Aufgabe A - Exponentielles Wachstum | |
A 3.0 |
A 3.1 Berechnen Sie, wie groß der Inhalt der von Schimmelpilz befallenen Fläche bei der Platte A am Ende des 6. Versuchstages war. Runden Sie auf Quadratzentimeter.
Leerzeile
|
Leerzeile
A 3.2 Bei der Platte A war der Versuch abgebrochen worden, als der Inhalt der von Schimmelpilz befallenen Fläche einen Quadratmeter erreicht hatte.
Ermitteln sie rechnerisch, am wie vielten Tag dies der Fall war. Leerzeile
|
Leerzeile
A 3.3 Auch bei der Platte B hatte sich der Inhalt der vom Schimmelpilz befallenen Fläche täglich um einen festen Prozentsatz vergrößert. Hier war
ein Quadratmeter am Ende des 13. Versuchstages erreicht worden. Berechnen Sie den Prozentsatz.
|
Leerzeile
Weiter gehts zu Abschlussprüfung 2009 - Aufgabe B
Leerzeile