Skalarprodukt

Aus DMUW-Wiki
< Lernpfade‎ | Prüfungsvorbereitung‎ | Trigonometrie
Version vom 4. Juni 2010, 08:10 Uhr von Peter Fischer (Diskussion | Beiträge)

(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu: Navigation, Suche
Vista-Community Help.png
Lernpfad-Navigator

LERNPFAD

Trigonometrie

Arbeitsauftrag

Als erstes schauen wir uns an, welche Bedeutung Sinus, Cosinus und Tangens am Einheitskreis haben. Anschließend wird der Umgang mit diesen Werkzeugen zur Winkelberechnung erklärt. Klick dich durch!

{{#slideshare:skalarprodukt-100603045003-phpapp01}}



Leerzeile


Aufgaben

Hier warten nun Aufgaben zu Exponentialfunktionen, diese sind auch sehr häufig in der Abschlussprüfugn zu finden!

Aufgabe 1

Ordne den Funktionsgleichungen ihre Graphen zu. Los geht's!

\quad f(x) = 0,5^{x-3}+2 Peter Fischer F1.png
\quad f(x) = 0,1^{x+5}-3 Peter Fischer F2.png
\quad f(x) = 3 \cdot 2^x-2 Peter Fischer F3.png
\quad f(x) = 1,5^{x+4}-0,5 Peter Fischer F4.png

Leerzeile

Aufgabe 2 Peter Fischer Papier.png

Berechnungen zu Exponentialfunktionen.

1.

Die Gleichung f_1: y=7-7 \cdot 2,72^{-0,5x} beschreibt welche Spannung y nach x Sekunden an einem Kondensator anliegt. Die maximale Spannung (Sättigungsspannung) ist 7V. Wie viel Prozent der Sättigungsspannung hat der Kondensator nach 2,60s erreicht? (Abschlussprüfung 2004; Aufgabengruppe A; 1.2)
Lösung:%
Karl der Große (742-814) wurde im Jahr 800 römischer Kaiser. Angenommen er hätte in diesem Jahr einen Cent für dich angelegt auf einem Sparbuch. Du bekommst jährlich 2% Zins, der Zinsertrag bleibt auf dem Sparbuch. Wie viel Geld hättest du im Jahr 2010?
Lösung: Mio. € (Auf ganze Milionen gerundet)

Punkte: 0 / 0


Weiter gehts zu Trigonometrische Funktionen
Leerzeile

Potenzen und Potenzfunktionen
LERNPFAD | Trigonometrie | Trigonometrische Funktionen | Berechnungen in Dreiecken | Skalarprodukt | Exkurs: Figuren und ihre Eigenschaften